3

New method of digital modulative adaptative auto-calibration of infrared imaging devices

by V.M. SAPTZIN (*), V.I. KOBER (**) and V.P. VAVILOV (***)

(*) Heat and Mass Transfer Inst. P. Brovki, 15, 220728, Minsk, Belarus.

(**) Inform. Transmission problems Inst. Ermolovoy, 19, Moscow, Russia.

(***) Tomsk Polytechnic University, Lenina, 30, Tomsk, Russia.

Abstract

This paper describes the new method of digital auto-calibration IR imaging systems based on using low-amplitude 2D cyclic scanning and solving multi-dimensional inverse problem. The method does not require the use of reference bodies and stages of registration and calibration can coincide. Mathematical algorithms require $\approx 100~N^2$ operations and are realized by using IBM PC/AT for N < 256.

1. Introduction

Modern technology allows to develop IR imaging systems with noise equivalent temperature difference (NETD) of about 0.001 K [1] but the practical realization of these systems and their metrology encounters some problems [2 to 4]. Non-uniformity of IR registrating device is one of these problems to be discussed in the present paper.

Non-uniform sensitivity of IR camera can be due to non-identical elements in the arrays, optical distortions and background irradiation. Digital correction of these effects is possible if the relationships between IR radiation intensity $l_{i,j}$ and output electrical signals $a_{i,j}$ are known. In linear approximation:

$$a_{i,j} = g_{i,j} \cdot l_{i,j} + h_{i,j}$$
 $1 \le i,j \le N$ (1)

where N is the number of pixels per line or column.

Coefficients $g_{i,j}$ and $h_{i,j}$ are usually determined by use of calibration procedure with two reference bodies, having intensities I1 and I2. Unfortunately, for systems with wide spectral and dynamic range and NETD < 0.1 K, this procedure has some drawbacks.

The best IR arrays use the InSb and CdHgTe detectors [5 and 6] but the attempts to enhance their uniformity, stability and sensitivity up to theoretical limits have still been unsuccessful. Better results were obtained on the base of Simade Schottky diodes arrays [7]. In general, they provide worse than InSb detectors sensitivity but much better uniformity and lack of low-frequency noise [8 and 9]. But even in this case the random variations of spectral sensitivity from one detector to another will limit the temperature resolution of IR systems [10].

It is important that such a problem arises even for single — or few — detectors arrays, for example when high metrological accuracy is needed.

We suggest the new method of adaptive auto-calibration which uses the ideas of modulative spectroscopy [11] and methods of solution for non-correct multi-dimensional inverse problems [12]. The method does not require the use of reference bodies and the stages of registration and calibration can coincide.

2. Discussion of inverse problem

The basic idea is to use the low-amplitude two-dimensional (2D) cyclic scanning of the IR camera itself or view angle scanning with additional mirror mounted on the camera. This idea is not new for image processing [13] but the basic problem is choosing of scanning law as simple as possible which permit from minimum number of images to determine correctly all $g_{i,j}$, $h_{i,j}$ and $l_{i,j}$ without any essential assumptions about its space characteristics.

The working analog of such a system with $N \approx 10^4$ is probably the human's eye. During observing the eye do many moves and fast low-amplitude 2D scanning with frequency $\approx 30\text{-}60$ Hz (tremor) is one of them [14]. Researches in this field last more than fifty years [14 to 16] but the role of tremor in visual information processing is not clear still.

As the basis we have used the simplest 2D cyclic discrete scanning consisting of 3 points. Each pixel is moving for one pixel up or down and one pixel left or right. For this scanning consequence of 3 basic images:

$$\{a_{i,j}\}, \{b_{i,j}\}, \{c_{i,j}\}$$
 (2)

minimum necessary for further processing can be obtained. Unfortunately, restoration of full input information $\{l_{i,j}\}$ is possible if at least one matrix of coefficients $\{g_{i,j}\}$, $\{h_{i,j}\}$ is known or has small dispersion. In a case of essential dispersion of both matrices, it is necessary to make two measurements of an object under the following condition:

$$I1 < I2 \tag{3}$$

For absolute and independent calibration of IR system it is enough to place two small-size reference emitters with different /1 and /2 into the frame.

3. Equations system and algorithms

According to (1-3) and scanning law an initial system of equations for $4 N^2 + 4 N$ unknown quantities $g_{i,j}$, $h_{i,j}$, $l1_{i,j}$ and $l2_{i,j}$ can be written as following:

$$g_{i,j}.IK_{i,j} + h_{i,j} = aK_{i,j} K = 1,2$$

$$g_{i,j}.IK_{i+1,j} + h_{i,j} = bK_{i,j} 1 \le i,j \le N (4)$$

$$g_{i,j}.IK_{i,j+1} + h_{i,j} = cK_{i,j} g_{1,1} = G^{-1} , h_{1,1} = G^{-1}.H$$

where constants G > 0 and H are determined by the scale of $I_{i,j}$.

For correction of non-uniformity it is enough to suppose G=1, H=0. It is important that the structure of system (4) permits to split procedures of restoration $\{g_{i,j}\}$, $\{h_{i,j}\}$, $\{h_{i,j}\}$, and $\{l_{i,j}\}$.

After subtraction of equations (4) with K=1 from ones with K=2 and elimination of terms $I2_{i,j} - I1_{i,j}$, the system for $g_{i,j}$ can be written as:

5

where:

$$\begin{aligned} U_{ij} &= (\left| a2_{i+1,j} - a1_{i+1,j} \right| + w) / (\left| b2_{i,j} - b1_{i,j} \right| + w) \\ V_{ij} &= (\left| a2_{i,j+1} - a1_{i,j+1} \right| + w) / (\left| c2_{i,j} - c1_{i,j} \right| + w) \end{aligned}$$

and the empirical parameter w > 0 is necessary for correct division when differences $(b2_{i,j} - b1_{i,j})$, $(c2_{i,j} - c1_{i,j})$ are close to noises value d.

If all $g_{i,j}$ are determined then the system of equations for $f_{i,j}=(h_{i,j}/g_{i,j})$ can be received from first (K=1) or last (K=2) part of (4) and written as:

where:

$$\begin{aligned} q_{i,j} &= \left(a \mathcal{1}_{i+1,j} / g_{i+1,j}\right) \cdot \left(b \mathcal{1}_{i,j} / g_{i,j}\right) \\ p_{i,j} &= \left(a \mathcal{1}_{i,j+1} / g_{i,j+1}\right) \cdot \left(c \mathcal{1}_{i,j} / g_{i,j}\right) \end{aligned}$$

are known values.

Digital correction of any image $\{a_{i,j}\}$ for arbitrary G and H come to be according to expressions:

$$I_{i,j} = G.(a_{i,j} \mid g_{i,j}) - (f_{i,j} + H) \qquad 1 \le i,j \le N$$
 (7)

Overdetermined non-correct systems of linear equations (5) and (6) in principle can be solved by well known least squares method. According to theoretical estimates [18] this method permits to restore $\{l_{i,j}\}$ with accuracy:

$$D \approx (\ln N)^{1/2} \cdot d \tag{8}$$

close to detectors' noise d practically for any N. But its numerical realization encounters some problems because of large operations' number (from $\approx N^4$ to $\approx N^3 - N^{5/2}$ for best iterative methods) and principal limitation on computer accuracy [18 and 19].

We have developed non-iterative hierarchical method for solution systems (5) and (6) which are matched by accuracy the detectors' noise and require only $\approx 100 \ N^2$ arithmetical operations for any N.

Equations of system (5) can be interpreted as recurrent expressions which permit to found any $g_{i+k,j+l}$ (with k=0, 1 and l=0, 1), if g_{ij} are known. Because of 2D $\{g_{ij}\}$ there are many ways for such a procedure and average with using some of neighbouring ones can be done. Thus if $g_{1,1}=1$, then first order approximation $g_{12}^{(1)}$, $g_{21}^{(1)}$, $g_{13}^{(1)}$, $g_{22}^{(1)}$, $g_{31}^{(1)}$,... $g_{NN}^{(1)}$, can be obtained and new recurrent expressions for next order approximation $\{g_{ij}^{(2)}\}$ can be written. This procedure is repeated $m \leq [\ln N] - 2$ times with using every one more large-scale nets [N/2]. [N/2], [N/4],... $[N/2^m]$. $[N/2^m]$ and more large detectors' blocks (2.2), (4.4)... $(2^m.2^m)$ considered as one element, respectively. Consideration for system (6) is the same.

It is important that in conveyor regime the algorithms could be reduced up to N^2 operations.

Practical realization of the algorithms has been done by using IBM-PC/AT for

N < 256. Results of numerical simulation agree with theoretical estimate (8) and some of them for N = 128 and case when $h_{i,j} = 0$ are demonstrated on figure 1.

REFERENCES

- [1] LLOYD (J.M.). Thermal imaging systems. Plenum, New-York & London, 1975.
- [2] HERRIMAN (K.H.). Infrared imaging with linear and matrix detector arrays a challenge to semiconductor optoelectronics. Proc. 13 Int. Symp. Techn. Comm. on Photon Meas. (Photon-Detectors). Brannschweig, 14-17 Sept. 1987, p. 207-214.
- [3] Infrared detectors and arrays: critical reviews of optical science and technology. Conf. Proc., Orlando, Fla. Bellingham (Wa.), SPIE, 1988 (SPIE Proceedings, Vol. 930).
- [4] VAVIVLOV (V.P.), MALDAGUE (K.) and SAPTZIN (V.M.). Post-processing of termograms in the infrared non-destructive testing. SPIE Proceedings Infrared technology XVII, Vol. 1540, 22-26 July, 1991, San-Diego, USA.
- [5] LOCKWOOD (A.H.) and PARRISH (W.J.) Predicted performance of indium antimonies focal plane arrays. Opt. Eng., Vol. 26, N° 3, 1987, p. 228-231.
- [6] BALCERACK (R.), GIBSON (J.F.), GUTIERREZ (W.A.) and PILLAR (J.H.). Evolution of a new semiconductor product: mercury cadmium focal plane arrays. Opt. Eng., Vol. 26, N° 3, 1987, p. 191-200.
- [7] TOWER (J.R.). Staring PtSi IR cameras: more diversity, more applications. Photonics Spectra, Vol. 25, N° 2, 1991, p. 103-104, 106.
- [8] KOSONOCKY (W.F.). Progress in Schottky-Barrier IR images. Proc. Soc. Photo-Opt. Instrum. Eng., Vol. 750, 1987, p. 136-137.
- [9] MOONEY (J.M.). Excess low-frequency noise in PtSi on p-type Si Schottky diodes. IEEE Trans. Electron Devices, Vol. 38, N° 1, 1991 p. 160-166.
- [10] PERRY (D.L.) and DERENIAK (E.L.). Proposed testing of spectral non-uniformity in PtSi area arrays [Pap.]. 1989. Proc. Soc. Photo Opt. Instrum. Eng., Vol. 1071, 1989, p. 2-11.
- [11] CARDONA (M.). Modulation spectroscopy. Academic, N.Y., 1969.
- [12] TIHONOV (A.N.) and ARSENIN (V.Y.). Methods solution of non-correct problem. Moscow, Nauka, 1979 (in Russ.).
- [13] TAKASHI IKUTA. *Active image processing*. Appl. Opt., Vol. 24, N° 18, 1985, p. 2907-2913.
- [14] YARBUS (A.L.). Role of eyes moves in vision. Nauka, Moscow, 1965 (in Russ.).
- [15] MARR (D.). Vision. Moscow, 1987 (Russ. transl.).
- [16] ROSENFELD (A.); Computer vision: a source of models for biological visual processes? IEEE Trans. Biomed. Eng., Vol. 36, N° 1, 1989, p. 93-96.
- [17] SAPTZIN (V.M.). On the correction problem of non-uniformity for IR systems with arrays. Preprint Lebedev's Physical Inst. N° 72, Moscow, 1989 (in Russ.).

6

7

[18] SAMARSKIY (A.A.). - The theory of difference schemes. Nauka, Moscow, 1982 (in Russ.).

[19] YOUNG (D.M.). - A historical overview of iterative methods. Comput. Phys. Commun., Vol. 53, N° 1-3, 1989, p. 1-17.

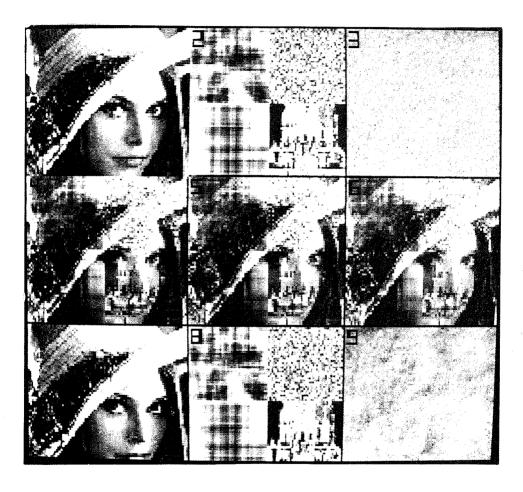


Fig.1. - Results of numerical simulation: (1,2) correspond to test images $\{l_{i,j}\}$ $(l_{min}=65, l_{max}=216)$, $\{g_{i,j}\}$ $(g_{min}=0.54, g_{max}=1.50)$; (3) is an example of detectors' noise $\{d_{i,j}\}$ $(< d_{i,j}>=0, < d_{i,j}>=1)$ amplified by factor 8; (4-6) are the results of simulation for direct problem and correspond to $\{a_{i,j}\}$, $\{b_{i,j}\}$, $\{c_{i,j}\}$ with independent additive detectors' noises; (7,8) are images $\{l'_{i,j}\}$. $\{g'_{i,j}\}$ restored from (4-6) and (9) is difference between $\{l_{i,j}\}$ and $\{l'_{i,j}\}$ multiplied by factor 8.