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Abstract 

Thermal interface resistances are associated with bad contact between two materials. In the case where 
this interface takes place between two rectangular slabs of the same material, a heat pulse experiment 
with recording of the slab surface temperature evolution, gives information about the space distribution of 
this resistance. The inverse problem is considered here, using an explicit analytical solution of the direct 
problem and a stochastic approach, in the case of a non uniform interface resistance distribution. 
Experimental inversion of frames produced by an infrared camera is implemented. 

Nomenclature 

a diffusivity 
a,b vectors 
A, B quadrupole matrices 
C,D quadrupole matrices 
e thickness of the slab 
e1,e2 thickness of the two layers on 

each side of the defect 
l width of the slab 
m number of time steps 
N number of space steps 
n number of harmonics considered 
N convolution matrix 

� 
Laplace parameter 
absorbed energy by unit area 

R interface thermal resistance 
T temperature (=0 at t= O) 
t time 
u coefficient 
x direction parallel to the faces of the slab 
z direction normal to the faces of the slab 

1. Introduction 

Greek symbols 

a eigenvalue 
pc, A. volumetric heat and conductivity 

(J standard deviation of noise on 1l.T* 
't laplace temperature 
8 laplace-Fourier temperature 

<p heat flux density 

'I' laplace flux density 

«I> laplace-Fourier flux 

p,p Fourier transform of R (x) and spectrum 

Superscripts or subscripts 
• 

inf 
sup 

�,p 
I 

0 
x, z 
1,2 

reduced quantity (dimensionless) 
under resIstance plane 
above resistance plane 
relative to a and p 

. 

relative to eigenvalue number i 
relative to sane slab 
in x- and z-directions 
relative to each layer 1 or 2 

Interface thermal resistances are the consequence of a structural discontinuity between two, 
materials. Examples can be found in composite laminates (carbon fiber reinforced polymers): a 
delamination between two plies is characterized by an air gap that may affect the mechanical 
behaviour of the structure under load conditions; This delamination also creates an additional 
resistance to heat flow if the laminate is thermally stimulated. Such is also the case in welding 
applications where one looks for a perfect bonding between two materials. 

A sketch of the interface thermal resistance between two slabs is shown in figure 1 in a two
dimensional case. The problem that is considered in any non destructive evaluation technique is 
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the detection of this type of defect and a quantification of its location, extent (x-direction) and 
magnitude. 

Cases where this resistance is a delamination between two plies in stratified composites 
have been considered in earlier works [1 ,2]: a photothermal stimulation of the front face of the 
slab with the simultaneous temperature recording of the thermal field on either side of it allowed 
an estimation of both depth and resistance of the delamination in cases where this resistance 
was uniform in space. A one-dimensional transient model was used for inversion, after local 
normalization of the recorded infrared signal. The present work is the continuation of [3 and 4] 
where two- and thre-dimensional effects were taken into account but we consider now that the 
interface resistance is a space-function R(x). 

2. Two-dimensional model 
The geometry of the problem is shown in figure 1 (cross-section x-z of the slab). The slab 

(dimensions: l x e) is made out of an homogeneous anisotropic material, one of its principal 

axes of anisotropy corresponding to the front face axis (conductivities A% and A" volumetriC 

heat pc). The defect has been modeled by an interface resistance R, located at a constant 
depth e1 beneath the front side. It is considered as a function of the x coordinate. The Dirac 
heat flux density of the stimulation (absorbed energy density Q) is supposed to be uniform on 
front face, the initial slab temperature is assumed uniform (T = 0) and the lateral sides (x = 0 

and x = l) and the front and rear faces (z= 0 and Z= e) are insulated. Temperature Tobeys 
the following equation : 

2.1. Model in Laplace domain 

aT 
pc -

a t  (1) 

It is possible to apply a time Laplace transformation to equation (1) and to its associated 
boundary, interface (z = e1 ) and initial conditions.The Laplace temperature 'C defined thereafter 
obeys the following system of equations: 

a't 0 = ax 
a't"'P = az 

't = 1: exp (-pt) T dt 

A. az't az't .!!.. ,.. 

A.: axz + azz 
-

az • 

= 0 

for x = 0, l and: a't = 0 az 
a-cin! and 'tsup - 'tin! = R(x) [_ A. a-c] az z az 

(2) 

(3a) 

for z = e  (3b) 

for z = el (3d) 

az ( = 1.z/pc ) being the thennal diffusivity of the slab in the z direction and superscripts sup 
and in! relating to conditions above or beneath the resistance plane (see figure 1). It is possible to 
make the axial (z direction) Laplace heat flux density 'P appear in boundary conditions relative to 
z = 0, el and e, that is the Laplace transfonn of the axial heat flux density q>: 

'If = Jo-exp (-pt) q> dt with: q> = - 1.z �: (4) 

In order to reduce the number of parameters in the problem, it is very convenient to use 
dimensionless variables: 
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'C. == A.z 'C I (Qc) 

cpO = e2cp I (aQ) ",. = '" I Q 

i· = !.. (A.z I A.S'2 e 
In the following part of this article. superscript • will be omitted for simplicity reasons. 

2.2. Model in Laplace-Fourier domain 
Using the space pulsations a that take the discrete values of the eigenvalues j 

a = ai = i 1t I l (with i:natural integer)of the problem. the space cosine Fourier transform 
pair of function 't (x.z.p) is defined according to: 

e (a,z,p) = J: 't (x,z,p) cos (ax) d.x ; 'C (x,z,p) = ! [eo + 2 iei cos (aix) ] (5) l i=1 

with: 9i =9 (ai • z. pl. Equation (3a) becomes then : 

a2e - - (p + (2) e = 
0 

az2 
(6a) 

One can note that derivation of equation (6a) is made using the eigenvalues as particular 
values of the pulsations ai as well as the x -boundary conditions. 

If cv is the cosine Fourier transform of the reduced Laplace flux density '1'. that is equal to unity 
for z = 0 and to zero for z = 1 (two faces of the slab). and that is the same on each side of the 
interface (z = e1). the z-boundary and interface conditions become: 

q, ( 0 ) _ sin (at) a"p - a for z = 
0 (6b) 

emp - ein! = J; R (x) 'II (x,z,p) cos (ax) dx for z = e1 (6c) 
q, (a,l,p) = 0 for z = 1 (6d) 

If 9 (0).0 (1)., (0)., (1) are the column vectors having each n+1 components (subscripts i = 
o to n) that constitute the spectra Oi (0 or 1) and «\Ii (0 or 1) of Laplace temperature and flux 
density on the front or rear face, system (6) can be written using three matrices (or 2D 
quadrupoles, that is two-terminal-pair networks) that stem from integration of equation (6a) with 
respect to z [5]. The first two of them are associated with layers (1) and (2), respectively above 
and beneath the interface plane of figure 1: 

(7) 

for q = 1 or 2. Diagonal matrices Bq, Cq • Dq are constructed the same way: 
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Aq (a) = Dq (ai) = cosh (ui eq) Bq (ai) = J.. sinh (ui eq) 
ui 

Cq (a) = ui sinh (ui eq) with: U. = (p 
+a/)I!2 for i = 0 to n 

In order to consider the complete spectra of Laplace temperatures and flux density, one should 
take n=oo; In practice n will be the number of harmonics that will be considered.The right member 
of equation (6c) is in fact the convolution product (noted' in Fourier space) between the Fourier 
cosine transform of R (x) and the corresponding transform <p (e1) of the Laplace flux If' at the 
location of the interface: 

9'"P - 9inf = P • � (el) = Np � (el) with: (8) 
and: 

Po 2 PI 2 P2 2 Pn 

PI Po +P2 PI +P3 .. Pn.1 +Pn+1 
1 - P2 PI +P3 Po +P4 Pn-2 + Pn+2 f. 

Pn Pn.1 +Pn+1 Pn-2 + Pn+2 .. Po +P2n 

Np is a convolution matrix constructed with p, the column vector that contains all the 
components of the spectrum of R(x). Finally heat transfer through the slab can be written the 
following way: 

(9) 

I and 0 being respectively the identity matrix and the zero matrix of order (n+ 1). Starting from 
this equation, it is possible to find the front or rear face thermal contrast in Laplace-Fourier (LF) 
domain, A9 (0 or 1), that is the double LF transform of the reduced temperature difference Ll r* 
between a point located on the face of a defectuous slab (reduced temperature r* = pce riO) 
and the corresponding point belonging to a sane slab (reduced temperature T: for R (x) =,0): 

A9 (0) = C1C"INpC1 (C +C1NpC2)-1 cjl(O) 

A9 (1) = - (C + C1NpC2 r
ICINpC1C"1 �(O) 

with: C = CI Az + AI Cz ; �(O) = [f. 0 0 ..... 0)' and cjl(l) 0 

3. The inverse problem 

3.1. Explicit inversion 

(lOa) 

(lOb) 

The problem considered here is to estimate function R (x) starting from measurement of 
T (x,z = O,t). Two quadratures of the measured signal, corresponding to transformation (2), with 
the calculation of 't (x,z=O,p), and of the reduced Laplace contrast Ll't (x,z=O,p) - and to 
transformation (5), allow the estimation of vector A9 (z=O,p), p being any value of the reduced 
Laplace variable. The number (n+ 1) of components of A9 must be smaller than the number of 
space points sampled (in x), III order to prevent aliasing (Shannon's theorem). Ll9 is now 
considered as the new input Signal that will be used for inversion, instead of the original one 

T (x, z ::: 0, t). Equation (1 Oa), for front face detection, can be put under the following form: 
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Np a = p * a = b with: a = CzCI4l(O) - C1 .6.9 (O,p) and b = CC�1 .6.9 (O,p) (11) 

Because of the commutative property of the convolution product (11), this equation is 
equivalent to: 

(12) 

where matrix Na is constructed starting from components of vector a the same way as Np 
starting from p in its definition following equation (8). An alternate explicit inversion algorithm, 
using A (x) and B (x), the originals of vectors a and b, can be found if one remarks that 
convolution product (11) in Fourier space corresponds to a simple product in the original space: 

R (x) A (x) = B (x) => R (x) = B (x) A (x) 

3.2. Simulation of inversion 

(13) 

A simulation of inversion has been implemented for a "smooth" interface resistance function 
(reduced depth: e1 =0.25 - reduced width of the slab: I. = 10), whose spectrum is given in figure 

2a; R (x) is the sum of two functions proportional to [1 + (x - Xl or 2)2t, Xi and X2 being the 
locations of the two local maxima. This function is plotted in figure 2b (curve 1) : it is a "camel 
type". function with two humps and is used to test the separative power of the inversion 
procedure. One can notice that n=10 harmonics are enough to characterize this function. The 
direct model, based on equation (10a), has produced a front face contrast field AT (t, x), 
numerical Laplace inversion being done via Stehfest algorithm (see [4]). A contrast thermogram 
AT (t) corresponding to the top of the lower hump of figure 2b is plotted in figure 2c (N= 128 
points for Fourier space quadrature, m=i00 for Laplace time quadrature). A computer generated 
random noise of standard deviation 0=0.1 (which is huge compared to the maximum level of 
contrast at that point: signal over noise ratio of 2) has been added to this contrast and is also 
plotted in figure 2c. Estimated profiles obtained with a time step M=O.01 and p =1 (curve 2) or p 
=5 (curve 3) are plotted in figure 2b. They correspond to the inversion based on equation (13); 
Use 0.0 equations (12) leads to nearly the same profile with however larger oscillations. The 
agreement seems to be very good between exact and estimated functions. 

A similar procedure has been implemented for a piecewise constant resistance: a "double door" 
that is plotted in figure 3a ( e1 =0.16, .1.= 9.235). It corresponds to a square isotropic sample 

whose dimensional characteristics are the following: 1.= 58 mm, e=6.28 mm, e1 =1 mm. The 
estimated profiles using the same level of noise (0=0.1) as before with n=40 harmonics (curve 2) 
and n=30 harmonics (curve 3) - At=O.01, m=100, N=128, p::9 - are plotted in the same figure 3a; 
One can notice that the results are not as good as in the preceding case: it is due to the fact that 
a lot more harmonics are necessary to take into account the very sharp variation of the resistance 
in the edge of the two "doors" (infinite derivative). 

3.3. Experimental inversion 

In practice, it is very difficult to calibrate an artificial defect of known characteristics; The "double 
door" resistance function has been realized between two PVC square samples (same 
dimensions as in section 3.2) that were joined by an adhesive film that has been deposited on 
the whole interface but two stripes corresponding to the two "doors". The other charasteristics of 
this sample are: pc= 1.327 106 Jm-3K-1. ax = 8z =1.13 10-7 m2/s (measured). 

An infrared short wave AGEMA 782 SW Camera with a DATAMIN acquisition system was 
used to digitize the infrared signal (dimensional M =0.64 s, m=100, N=120). The inverted profile 
(obtained for an optimized value of the Laplace parameter p based on a stochastic technique 
and simulations of inversion to minimize the estimation error - see [5]) , expressed in term of 
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defect thickness ed (with ed (x) == (Ad / "A)eR(x), Ad == Aair == 0.026 S.I., p=9 and n=30) is 
shown in figure 3b and compared with the corresponding profile measured in an optical way 
(first door: thickness = 0.144 mm for a width of 3 mm;second door: thickness = 0.159 mm for a 
width of 5 mm; distance of 8 mm between two doors). Agreement between the two profiles 
seems satisfactory, except for the edges and for the levels of the maxima corresponding to the 
two "doors". These results will be improved in the future using a function specification technique, 
the transfer function of the camera, other values of p (least squares ?) and a better stimulation. 

4. Conclusion 
The method of integral Laplace and Fourier transforms has been used in order to estimate the 

variation of an in-plane interface thermal resistance starting from a transient surface temperature 
field recorded on the slab that has been stimulated by a Dirac heat pulse. The inversion algorithm 
is an analytical explicit one; A simulation study has shown that "smooth" interface resistance 
functions can be estimated with a satisfactory precision. The main causes of the estimation error 
can be studied using stochastic tools and experiment simulations. Inversion of an experimental 
"hard" interface resistance has been implemented; It gives some orientations to an improvement 
of the inversion algorithm that has to be made using the control of the estimation errors. Extension 
of this inversion technique to three-dimensional problems [3] with a two-dimensional resistance 
distribution R (x,y) is also possible. 
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Fig. 1. - Geometry of the problem 
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