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Abstract 
Averaging techniques are well suited for infrared image processing because they consider 

spatially averaged temperature fields related or not to each constitutive phase of heterogenous media. In 
the case of simple geometry, such as thin rectangular adjacent plates, one or two dimensional exact 
analytical relationships can be obtained between averaged temperature related to each plate. These 
expressions are suitable to estimate thermophysical properties such as thermal diffusivity or thermal 
resistance at the junction of the plates. The main advantage is to reduce the influence of measurement 
noise. Experimental results are obtained and some examples of estimation of thermophysical parameters 
are presented. 

1 Introduction 
Two-temperatures models are generally used to describe diffusive transfer in porous 

media at macroscopic scale in the case of non-local thermal equilibrium (see Vortmayer and 
Schaefer [1], Schlunder [2]). Recently, Quintard and Whitaker [3] have revisited these models 
and better justified several assumptions, especially the exchange coefficient between local 
phases, with averaging techniques. 

Two-temperature models are not commonly used to interpret experimental data 
because of the difficulty in estimating the average temperatures. However, infrared image 
processing is well suited for such an interpretation task since enough data are available to 
compute these averaged fields. 

In the case of simple geometry, such as the thin rectangular layered plates shown in 
Figure 1, one or two dimensional exact analytical relationships between the phase averaged 
temperatures can be obtained in order to estimate thermo physical properties such as thermal 
diffusivity or interfacial resistances. 

2 Analytical relationships between averaged quantities in the case of two adjacent 
rectangular plates 

Consider two adjacent rectangular thin plates whose geometry is presented in figure 1. 
The experiment consists in heating the plate 1 (for example by transient Joule effect). The 
thermal excitation must be uniform in the x-direction and only a function of y and t. 

The temperature gradient is assumed to be uniform perpendicular to x-y plane. Lateral 
heat losses are considered to be uniform in the x-y plane. This results in a source term 
proportional to the temperature field (fin hypothesis). 

The general system governing heat transfer in both adjacent plates can then be written: 
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(1-d) 

Boundary conditions at y=O and y=L are assumed to be homogenous and will be explained for 
each particular case. Integral Laplace transform on variable f and Fourier transform on y (Sine, 
Cosine or exponential Fourier transform following boundary conditions imposed at yends), give 
the transformed general equation (1-a) such as: 

T; =0 at f=O (1-e) 

-iTo; + dd2x~ + ~ =0 With: iT =(~+a2+~J 
/1./ 8; A;e 

(2) 

where a is the spatial frequency in the transformed space following y, p is the Laplace variable 
and F(s,p) or F(a,p) corresponds to successive transformation of O(y,f). Solution of this 
problem can be presented, for phase 1, under such quadrupolar form (See [6] for further 
informations about quadrupole method and integral transforms): 
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Averaged temperature and flux along x are defined as: 

1 1 ej 1 1 ej 

< 01 > = - f01(x,p,a)dx ; < ¢J > = - f¢J(x,p,a)dx 
e1 0 e1 0 

(4) 

vector « 01 >
1
, < ¢J >1

/ can be related to the characteristic vector of the interface between the 

two plates (81( e1, a,p) .. ¢1( e1,a,p ))t, with the following quadrupolar expression: 
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Similar procedure for plate 2 gives: 

( 82(O,a,p)i = [th~~:;2) A213: 2e2 - A2f32th~132e2)]« 8 2 >:J (6) 
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If contact between plates is uniform (non-depending on y) , interface transfer yields: 

(81(O,a,p)) = (1 Rc)(82(O,a,p)) (7) 
$1(O,a,p) ° 1 $2(O,a,p) 

Expressions (5) and (6) can be illustrated by an analogic electrical scheme (figure 2) which 
shows that the exchanged flux between phase 1 and 2 can be written as: 

<¢>=Z«01>1_<02>2) (8) 

with Z, impedance defined by: 
1 1 1 

Z= ---+R + (9) 
~!Nh(ftte1) ~ple1 c AzjJ2fh(flze2) A2flz2e2 

Expression (8) models the global thermal exchange between phase 1 and phase 2. The first 
order Taylor expansion of Z (with psmall) gives a pure resistance: 
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(10) 

If the rectangular plates are considered as one elementary cell of a periodic porous 
medium, the approximation of Z can be used to model heat transfer in porous media ([1,2]) and 
has been rigorously defined in [3]. Z describes the thermal exchange between phase 2 and 
phase 1. Such a rectangular geometry is a suitable situation to test parameters estimation. 
Several direct applications in this case can be implemented in the case of non-destructive 
testing of welding between thin metallic plates. 

3. Identification method in the case of 1 D system 

3.1 Explicit identification formula 

In the experimental case presented on figure 1, the heat transfer can be considered as 
one dimensional. The heat excitation is uniform in the y direction and adiabatic conditions are 
assumed at the y-ends. Then, the spatial frequency a is zero and temperature field is averaged 
not only on x, but also on y. 

In zone 2, no heat excitation occurs, and the averaged heat flux in zone 2 can be 

expressed as: < rh.. >2= 0 (11) 

This last expression replaced in (6) gives one simple relationship between averaged 
temperatures in each parts: 

<91 >1=(1+ZA.2!3/e2) <9 2 >2 
P 2h 
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8i A.ie 

(12) 

Expression (12) is convenient because the knowledge of Oft) is here not necessary to 
estimate parameters such as 8,. or Rc . Moreover, emissivity does not need to be known, if this 
parameter is uniform on both plates. Only a signal proportional to the temperature field has to 
be processed. 

For example, in the simple case where plate 1 is the same as plate 2 with perfect 
contact, thermal diffusivity can be estimated. This will be shown on the further example. 

3.2 Estimation with two temperatures model 
If plate 1 is the same as plate 2 and with perfect contact, combination of expression (12) 

and (10) gives: 

< 01 >1",(Ap+ B) < 02 >2 
2el 4he1 

With A= -- and B= 1+--
381 32je 

(13) 

Coefficients A and B, can be identified by processing « 91 >
1 / < 92 >2) for several p values. 

This last function is then a straight line of slope A and origin B. The first parameter A is only 
depending on thermal diffusivity and the second parameter B depending on the heat losses 
non-correlated with A. p values are chosen in a convenient interval in order to avoid zero 
dividing at short time and truncation error of the Laplace integral at long time (see [7]). 

3.3 Use of minimisation algorithm with exact model 
After the first estimation of thermal diffusivity and heat losses by direct expression (13), 

it is possible to improve the estimation by a minimisation algorithm. 
Expression (13) can be written in time space with a convolution product. The inverse 

transform of the transfer function between < 81 >1 and < 82 >2 is in time space: 

G(t) = L-1( 1 J = L-1( th(/31e1) J (14) 
1 + Z A2/322e2 2/31el - th(/31e1) 

Expression (4) can then be written in time space: 
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t 
< T2 >2 (t) = J< 71 >1 (t- Jl) G(Jl)dJl (15) 

o 
The first estimation of parameters by the previous explicit formulas can give the first 

step of a minimisation algorithm (Neider-Mead or function fmins in Matlab [5]) . The quantity to 

be minimised is the difference between the theoretical evaluation of< Tz >2 (t) by the 

convolution product (16) and the experimental values of < T2 >2 (t). 

4 Rough estimation in 20 case 
If the contact between the plates is non-uniform (depending on y), the interface transfer 

expression is more complicated in transformed space (see [4]). Therefore, expression (5) and 
(6) can even be used, in order to process averaged quantities instead of local noisy data. 

At short time the Laplace variable can be considered as: .£» ~ and .£» 0.
2

, this 
aj Aje aj 

is equivalent to assume that lateral heat losses and heat diffusion in the y-direction are 
negligible. In the case where plate 1 is the same as plate 2 with e, =e2' the following 
expressions can be written from (5)and (6): 

« r, >' (t,y)- < T2 >2 (t,y)) 
Ra(Y) = or 

pc2e2( a <_~: >2 (t,y)) 

(16) 

As previously, such expressions are independent on time evolution of the heat excitation 
and do not need the knowledge of emissivity. 

5 Experiment 
5.1 General device 

Experimental results have been obtained with infrared camera TVS 2000 from AVID. 
The maximal scanning rate is 30 images/s and each frame is 100 X 256 pixels. Each 
experiment is composed of more than 100 frames recorded at regular time steps. The entire 
sequence is stored after the experiment from the real-time memory of the thermographic device 
into a magneto-optic disk. Then the experimental data are directly loaded and processed in 
Matlab [5] on a PC with Pentium 100 processor. Some examples of images obtained after the 
beginning of heating are shown in figure 3. The processed surface of the sample is painted 
uniformly in black in order to avoid any emissivity variation. The transient form of heating is a 
slot of several second length. The energy is about 5 W on the surface of plate 1. Then the 
maximum temperature difference is about 10K. 

5.2 Thermal diffusivity estimation-Plates with perfect contact(10 case) 

The sample to be tested is an aluminium alloy plate of thickness e=2mm and lateral size 
el'= e2.=32mm. The evolution of experimental averaged temperatures is presented in figure 4. 
It can be seen that the noise influence on these curves is reduced compared to images (even 
smoothed). Processing of curves from figure 4 allows to first estimate parameters A and B. 
Then, the thermal diffusivity a is obtained with a minimisation algorithm. It can be seen on figure 

4 that the theoretical evaluation of< T2 >2 (t), from experimental evolution of < 71 >1 (t) and 

convolution product (16), is well superposed to experimental values of < Tz >2 (t). 
We obtain here a=4.7 10·Sm2s·1 which has been confirmed by the classical flash method. 
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5.3 20 case non uniform interface between plate 1 and 2 
The sample to be tested is the same plate as in the previous case, but there is a non 

uniform split at the interface between the two plates (see figure 5). One example of image 
obtained during the excitation is given in figure 6. Application of the simple explicit expression 
(16) gives a first rough estimation of the y-distribution of the interface resistance. The profile is 
fitting to the slit geometry, even if too restrictive approximations do not allow to' obtain the right 
local values. 

6 Conclusion 

Advantages of such methods are that even poor experimental information is sufficient to 
process the estimation (emissivity, evolution of the heat excitation). Averaging is here efficient 
to reduce the influence of measurement noise. Perspectives are to improve estimation in 2D 
cases, by taking into account lateral heat losses and 2D diffusion. 

Nomenclature: 
Bi: thermal diffusivity of phase i 
ei: width of plate i 
e.1hickness of the plate 
Pi:generalised frequency relative to phase i 
G:transfer function 
h:lateral convective exchange coefficient 
L -1: Inverse Laplace transform 
Ai: thermal conductivity of phase i 

p: Laplace variable 
Q,F: Heat excitation, (real, transformed) 
(pc)i: volumic heat of phase i 
t time 
<T;:>i:, <O;:>i averaged temperature (real, transf.) 
Z: exchange impedance 
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Fig 3: Images from 1D transient case. at t=5s and t=16.6s. 
(smoothed with a moving average of 3*3 pixels) 
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Fig 4 Averaged temperature evolutions in 1 Dease 

Fig 6: Image obtained in 2D transient case(t=15s) 
(smoothed with a moving average of 3*3 pixels) 
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