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Abstract 

In the paper a statistical method of edge location on the basis of the object radiation 
signal taken directly from thermogram has been presented. The proposed edge location 
method is based on maximum searching of mean square measure in an area. Considering 
the edge as an area between two isothermal surfaces, the maximum of variance in the 
edge neighbourhood can determine location of the edge. There was introduced a thermal 
edge model including such parameters as: spatial resolution, bias and a range of the edge 
temperatures.  

1. Introduction 

Algorithms of the edge location with sub-pixel precision are usually considered in case 
of visual images [1]. Due to limited spatial resolution, the loss of information about the 
signal edge must be reconstructed by means of a mathematical approximation model of 
the edge. A similar solution can be applied to the edge analysis of thermal objects 
registered using the infrared thermography technique [2,3]. The main problems in 
mathematical model of forming of the infrared edge are: errors of method of measurement 
[4,5,7] as well as finite spatial resolution of the thermal camera [8-10]. In the paper a 
statistical method of edge location on the basis of the object radiation signal taken directly 
from thermogram has been presented. There was introduced a thermal edge model 
including such parameters as: spatial resolution, bias and a range of the edge 
temperatures. 

2. Edge model 

An ideal physical edge may be considered as the step function determined in the 
spatial domain. In fact, edge images received from optical system are disturbed by lens 
aberration and disperse effects. The former are responsible for shape changes in the 
image, the later are responsible for details recognition quality. Assuming sub-pixel 
precision of the edge location, especially the last influence of effect must be taken into 
account.  

For visible optical systems as well as for infrared systems a degree of blurring is 
determined by Spread Response Function (SRF). In the one-dimensional case this 
function equals the Line Spread Function (LSF)[9]: 
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where σ is the parameter of blurring degree (related to spatial resolution of the system). 
LSF determines one-dimensional spatial impulse response. So the step response of the 
system is:  
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where ESF(x) is the Edge Spread Function which describes edge signal received the by 
camera. Considering (1) and (2) the blurred edge model is expressed as: 
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For thermal imaging, mainly for simulation purposes, more useful form of (3) is if 
ESF(x) represents radiation intensity I(x) and depends on temperature. Taking into 
account the well known formula [5]: 
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and introducing variables: T0 – bias temperature (lower temperature of the edge), ∆T – 
temperature “height” of the edge, then substituting: 
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(3) takes form: 
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where R, B, F – calibration constants of a thermal camera.  
Figure 1 presents result of edge modelling using (7) for 3 different σ values and for 

T0=293 K and ∆T=60 K 
The last stage of modelling includes sampling process. For 1D case the pixel signal 

taken from the detector area is averaged according to:   
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where, ∆x – denotes pixel dimension. 
Assuming ∆x=1, x scale both for continuous discrete signals remains unchanged. 

Figure 2 shows graphic interpretation of the final discrete one-dimensional edge model for 
σ=0.5.  
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Fig. 1.  Edge model (intensity object signal) for different values of σ 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Discrete edge model. Bars denotes pixel signal values 

 

3. Sub-pixel edge searching 

The proposed method is based on maximum searching of mean square measure in an 
edge neighbourhood area. Figure 3 presents a principle of searching for one-dimensional 
ideal edge location. The edge discriminates two areas having values a and –a 
respectively. 

The model presented above can be expressed by binomial distribution. Frequency of a 
in window area (x0,x2) is given by the formula: 
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Fig. 3. Edge location searching using mean square measure – statistical approach: 
(dotted area denotes a moving data analysis window across the edge),  
 a)  frequency of a in data window is bigger than frequency of –a,  
 b)  frequencies of a and  -a in data window are the same 
 

For the considered distribution, variance in (x1,x2) equals [10]: 
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and achieves maximum for  
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which determinates co-ordinate of the edge. Relationships presented above can be a 
proof of thesis, that the maximum of variance in the considered edge neighbourhood can 
determine location of the edge. Since the co-ordinate of this maximum is not depended on 
y so the bias error related to measurement of y may be eliminated. In practice, for V(x) 
estimation the following expressions can be used:  
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for even number of samples, or for odd number of samples: 
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where: N – number of samples in data window (corresponding to fig.3), ∆x – pixel 
dimension (corresponding to fig.2 and equation (8)), PSM(x)=PIXELSIGNAL(x) (equation 
(8)), PSMav – average of N pixel samples, VPS – variance estimator of N samples. 
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Since it was assumed ∆x=1, the corresponding co-ordinate x of VPS(x) and the integer 
i-th value VPSi matches each other (xi=i). In this case the edge location X0 is estimated by: 
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where (M+1) is a number of samples in X0 neighbourhood, which exceed VPS estimation 
error calculated from [6]: 
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where σ is the standard deviation of measurement using thermal camera, ξ4 – 4-th order 
moment of thermal field registered in isothermal part of the edge signal.  

The measurement error of X0 can be obtained from the error propagation theory: 
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Fig. 4. Graphical interpretation of edge location according to equation (16) for M=12 
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and uk is determined by equation (17). 
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4. Simulations and experiment - results 

On the basis of the presented edge model, simulation tests and experiments have 
been conducted. During the simulation tests, there were considered different levels of 
noise. The results are presented in table 1. 

The laboratory stand for measurements was equipped with thermal camera 
ThermaCAM PM 595 (FLIR) and lenses 24°x18° Figure 5 explains the method of 
thermogram analysis. As a thermal object a radiator 50x50 mm (±0.1mm) has been used. 

 

Table 1. δloc – location error related to pixel dimension,  
 δdisl – dislocation error related to pixel dimension. 

Number of samples - N Number of samples - N 

4 6 8 10 

 

δloc % δdisl % δloc % δdisl % δloc % δdisl % δloc % δdisl % 

0 23 2.3 15 1.6 12 1 3 1 

0.1N(0,1) 22 5.6 4.2 2.1 4.3 1.6 3 1.7 

N
oi

se
 

1N(0,1) 120 5.6 62 3.2 5.4 2.6 56 2.4 
 

 

X0 
Fig. 5. Edge location analysis on the basis of radiator thermogram 

There were conducted 216 measurements collected at distances: 0.5, 1 and 2 meters. 
The standard deviation of measurements did not exceed 0.02 of pixel. The width of the 
radiator received from experiment was biased up to 0.2 of the pixel dimension. This error 
was caused probably by geometrical distortion error of optical system since it was getting 
smaller with increasing the distance form camera to object.  
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