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Abstract  
 
Thermographic Signal Reconstruction (TSR) is a processing technique in 
Themography for Nondestructive Testing (TNDT). It is based on a least square fit of a 
low order polynomial to the logarithmic time evolution of experimental data. Even 
though TSR allows the reduction of data for processing and the filtering of high 
frequency noise, the resulting TSR polynomial coefficients lack of physical meaning 
to provide quantitative results and further processing is required in order to 
characterize internal defects. We propose to use Artificial Neural Networks (ANN) as 
a tool to map between TSR coefficients and defect depths. This paper presents the 
application of ANN and TSR coefficients as learning and validation data sets to 
characterize defects in composite materials.  
 
1. Introduction  
 
Thermographic Signal Reconstruction (TSR) is a processing technique that makes 
use of the one dimensional heat diffusion equation describing the surface 
temperature evolution in a semi-infinite sample after it has been thermally stimulated 
with a Dirac pulse [1]:  
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where t is the time, e is the material effusivity and Q is the energy density at the 
surface. This relationship can be rewritten in a double logarithmic form so that the 
time dependency of temperature at each pixel can be approximated with a 
polynomial having the following form [2]: 
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TSR provides good qualitative results [3] allowing the detection of defects, the 
reduction of data for processing and the filtration of high frequency noise. Further 
processing of TSR results can also be used for quantitative characterization since the 
logarithmic behaviours of the pixels that correspond to a defective area depart from 
the pseudo-linear behaviour (with slope -0.5) at a particular time that is correlated to 
the depth of the defect (Figures 1 and 3). 
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Fig. 1. Temperature versus time evolution in a composite (CFRP) sample with 
Teflon® insertions with different sizes at different depths 

 
Although TSR generates filtered experimental data it is also worth noting that the first 
and second time derivatives of the filtered data have proven to be useful for 
quantitative purposes [4, 5] since contrast between defective and sound areas is 
enhanced. On the other hand, the TSR polynomial coefficients in Eq (2) allow a 
simple mathematical representation and a significant compression of experimental 
data but they lack of physical meaning that can be used for quantitative purposes. 
ANN are known by their ability to perform a non linear mapping between two sets of 
variables [6], their low sensitivity to noise and capabilities for learning and 
generalization [7, 8, 9,10]. 
The purpose of this article is to investigate the ability of ANN to map between the 
TSR coefficients and defect depths mathematical spaces. First, we analyse the 
behaviour of TSR coefficients with respect to defect depths in order to determine 
which coefficients are more significant for a correct mapping. Second, we train and 
validate several Multilayer Perceptron (MLP) architectures with TSR coefficients 
extracted from thermogram sequences of a CFRP sample. Finally, the results are 
analysed to determine the advantages and limitations of this technique. 
 
2. TSR polynomial coefficients 
 
TSR polynomial coefficients allow a significant degree of compression since if the 
entire sequence of TSR images is to be stored, it is only necessary to save the 
polynomial coefficients images, regardless of the length of the image sequence. In 
addition, coefficient images show already significant contrast improvement with 
respect to raw data [11]. However, TSR coefficients do not have physical meaning 
that allows a direct interpretation for defect characterization. 
In order to use the TSR coefficients as input data to ANN and perform defect 
quantification, their behavior with respect to defect depth variations need to be 
analyzed. The aim is to determine which are the coefficients that preserve as much 
of the relevant information as possible and know if there is any set of input patterns 
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(TSR coefficients) that produces the same output patterns (defect depth) and could 
mislead ANN depth estimation. 
 

 
 

Fig. 2. TSR coefficients behaviour with respect to defect depth in a CFRP sample 

 
Simulated composite samples (CFRP) were designed using ThermoCalc6L software 
from Innovations Inc [12] in order to analyse the TSR coefficients behaviour with 
respect to defect depth. For these simulations the TSR coefficients were extracted 
using a 4th order polynomial from temperature curves over simulated defects 
(100-µm-thick) that were located at different depths ranging from 0.1 mm to 1.8 mm.. 
The defect sizes were 16x16 mm2 to decrease the effects of 3D lateral heat diffusion 
and follow the behaviour of the 1D transient model described in Eq.(1). As observed 
in Figure 2, coefficients a0 and a1 have the highest sensitivity to depth while 
coefficients a2, a3 and a4 present small sensitivity to depth. In addition, the 
sensitivity decreases for defects deeper than 1 mm. Moreover, for defects with z < 1 
there is no multivalued output patterns (defect depths), which means that every input 
pattern (TSR coefficients) represents only one output pattern for these depth range. 
This conclusion is important because when applying neural networks to inverse 
problems it is essential to anticipate the possibility that the target data may be 
multivalued. 
 
2.1 Discrimination ability of TSR coefficients 
 
In ANN applications for classification, it is very important to determine which features 
(TSR coefficients in this case) preserve the relevant information to use for the 
training process and architecture selection. To quantitatively determine the 
discriminating ability of TSR coefficients between defective and non-defective 
classes we used the lambda Wilks criterion [13] which takes values between 0 and 1, 
the closer to 0 the higher is the discrimination ability of the selected features. 
 

http://dx.doi.org/10.21611/qirt.2006.010



||
||
EI
I

Wilks +
=Λ          (3) 

 
Where, I is the matrix within groups variability sum of squares and E is the matrix  
between groups variability sum of squares.  
 

Table 1. Lambda Wilks Criterion 

TSR Coefficients Discrimination ability 
a4 0.936 

a3,a4 0.907 
a2,a3,a4 0.838 

a1,a2,a3,a4 0.780 
a0,a1,a2,a3,a4 0.770 

 
Table 1 shows the discriminant ability of TSR coefficients a0, a1, a2, a3, a4 and 
some of their combinations; we observe that using the whole set of coefficients 
provides the most non redundant information. 
 
3. Experimental validation  
 
The network classification ability is evaluated in this section using a 2-mm-thick 
CFRP sample whose configuration is presented in Figure 3. The locations and 
geometries of the 25 Teflon® insertions are also indicated in this figure. 
 

 
Fig. 3. CFRP sample with Teflon insertions  

 
The sampling frequency used to acquire the image sequence for this test is 39.45 Hz 
and the acquisition time is 6.80 s. For this particular test, only one flash lamp was 
used as heat source producing a strong non uniform heating pattern. The training set 
consists of TSR coefficients extracted from experimental temperature curves. These 
TSR coefficients were obtained by using a 4th order polynomial to fit the temperature 
curves. In this set, 25 input patterns correspond to defective pixels and 16 
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correspond to sound pixels. For this test we selected an MLP architecture: 5-10-5 
neurons after preliminary test with other architectures and observing that this 
architecture provides the best performance in terms of correct classified pixels. This 
network was trained with Bayesian regularization which minimizes a combination of 
squared errors and weights and then determines the correct combination that 
produces a network that generalizes well. 

 
Fig. 4. ANN output for defect depth estimation in CFRP sample after filtering 

 
Figure 4 illustrates the ANN output for defect estimation in a CFRP sample after 
using a 2D median filtering. It is observed that, with the exception of the z=0.2 mm 
defect, all other D=3 mm (D is the lateral size) defects were not correctly classified. In 
addition, false defects detections occur especially in those areas surrounding the 
smallest defects (D < 3 mm) and in the right area which presents a local non-uniform 
heating. For this test, 80% of defective pixels and 96% of non-defective pixels were 
correctly classified. 
 
4. Conclusions  
 
The use of ANN to map TSR coefficients into defect depths shows good 
characterization capabilities. This approach is affected by non-uniform heating since 
this phenomenon changes the temperature curves so that the least-square fit and 
TSR coefficients are also influenced and the ANN defect estimation is misled. The 
TSR coefficients of lowest order (a0, a1, a2) present the highest variability with 
respect to depth and preserves the largest part of information. However, according to 
the lambda Wilks analysis the higher order coefficients are also important to improve 
discriminating ability. 
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