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Abstract

The analysis of the internal defects (not detectable by a visual inspection) of the

aircraft composite materials is a difficult task unless invasive techniques are applied.

In this paper we have addressed the problem of inspecting composite materials by

using automatic analysis of thermographic techniques.

The proposed approach consists of two steps: at first a neural network was trained to

model the time space variations in a sequence of thermgraphic images and then the

same neural network was applied to all the points of a sequence of thermographic

images. The experimental tests were performed on a composite material and they

demonstrate the ability of the method to recognize regions containing defects even in

presence of considerable lighting variations.

Keywords: Infrared thermography, internal defects, neural networks, defect

classification

1. Introduction

The problem of guarantying reliable and efficient safety checks has received great

attention in recent years in aeronautic contexts: the maintenance operations,

especially those applied on in-service aircraft, have to be reliable but also have to be

performed at low cost in order to meet frequent schedules. In particular non

destructive testing and evaluation (NDT&E) techniques are necessary to early detect

damage in high stressed and fatigue-loaded regions of the structure. Some of  these

NDT&E techniques are based on analysis of the transmission of different signals

such as ultrasonics, acoustic emission, thermography, laser ultrasonic, X-

radiography, eddy currents, shearography, and low frequency methods [1].
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Transient thermography is a very promising technique for the analysis of aircraft

composite materials [2]. It is a non-contact technique which uses the thermal gradient

variation to inspect the internal properties of the investigated area: the materials are

heated by some external source (lamps) and the resulting thermal transient is

recorded using an infrared camera. Some research has been presented in the

literature on the use of thermography to investigate aircraft components [3,4,5]. They

have demonstrated the effectiveness of  thermography in detecting internal defects

and show excellent results on all the investigated samples.

Different qualitative approaches have been developed by many researchers to

investigate the effects on thermographic images of a number of parameters such as:

specimens of materials, defect types, depths of defect, size and  thickness [6,7,8].

Quantitative approaches are attractive in the analysis of thermographic images

because of the possible diagnosis capabilities that they introduce. They involve the

solution of the direct problem, that is the computation of the expected response from

known sound and defect materials, and the inverse problem, that is the evaluation of

defect characteristics from a known response. Due to the nonlinear and non-univocal

nature of these mapping problems, the solution is rather complex. For this reason

some attempts using neural networks have started to emerge in the last few years

[9,10,11].

In this paper we address the problem of developing an automatic system for the

analysis of sequences of thermographic images to help the safety inspector when

elaborating his diagnosis. Starting from the observation that composite materials

have different behaviors during the transient phase of the thermographic inspection,

we devised a neural approach that learns the main characteristics of these thermic

evolutions and then uses them to classify the investigated area as a defective or

sound area. The neural network classifiers were found to be particularly effective

since they can easily implement the non linear mapping from an input feature space

to an output space.

In this work a composite sandwich material with a metallic core was considered.

When the material is irradiated with high power lamps its surface has variable

thermic gradients that can be recorded with a thermo-camera. The reflectivity time

evolution of each pixel of the image differs when some regions contain inner defects

due, for example, to water intrusion or holes caused by impact. A supervised learning

method was used to train the neural network to analyze the variations of these mono

dimensional signals and to extract the main characteristics associated to different
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regions of the same materials. To reduce the effects of noise and lighting variation,

denoising and normalizing algorithms were applied to the initial signals. The neural

network was trained to recognize different defects by using a sample set of image

points. The whole system was tested on all the image pixels simulating different

linear and non linear lighting variations.

Experimental results on the considered composite materials demonstrate the

effectiveness and the potential capabilities of the proposed approach even in

presence of considerable lighting variations.

The structure of this paper is as follows. In Section 2, the system overview and the

experimental setup are presented. The neural network for classification of defects is

described in Section 3 whereas, in Section 4, the experimental results are presented.

2. System overview

Thermographic analysis is based on estimating the reflectivity of the materials

undergoing temperature variations. Usually, the considered spectrum is centered at

5-6 µm (short wave band) or centered at 10 µm (long wave band). The detection is

carried out by using thermo-cameras sensitive  to the infrared emissions. Of course,

this kind of analysis is only applicable to materials that have a good thermic

conductivity such as metals and carbonic composites. Different types of thermic

excitation can be used according to the materials and the defects considered: for

instance uniform heating, spot heating, line heating. In  this work, a quasi-uniform

heating has been guaranteed by using Xenon quartz lamps with a power between

250-375W. This kind of heating allows a temperature variation around 20°C/sec. In

figure 1 the lamps and the thermocamera used for the experimental setup are shown.

In this work a sandwich material was analyzed: it has an external skin in carbon fibre

composite and a metallic core. The analyzed structure has three holes with different

diameters and depths in which different quantities of liquid were inserted. In the

boundary areas of these holes the presence of vapor is evident because of the phase

transformation from liquid to gas. In figure 2 it is possible to observe the analysed

structure and one of the corresponding thermographic images. On the right the gray

level scale corresponding to the temperature of the material is reported.

In all the cases the defects or the internal damage are not detectable with a visual

inspection.
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In the experiments carried out on this material the maximum power of the lamps and

the duration of the heating were 5kW and 8 seconds. We have analyzed mono-

dimensional signals obtained by considering the time variation of each pixel in the

sequence of thermographic images. For each point (i,j) of the image (see fig. 5) the

mono-dimensional signal is generated from the gray levels of the same point in the

sequence of images: this signal represents the temperature variation of the material

during and after the heating process. For example in figure 6, two points of the

analyzed structure are shown. The first one corresponds to a defective point while

the second one corresponds to a sound point. On the x axis are the frame numbers,

on the y axis the corresponding gray levels that depend on the temperature of the

material.

In this way it is possible to generate spatio-time variant images the analysis of which

allows the evaluation of the thermic gradient during the heating process. In figure 6

the two investigated points show different behaviors: the defective point presents a

reduction of the temperature in the first 50 frames because of the phase transition

from liquid to vapor and then an increase of the temperature in the successive

frames. The second point signal, corresponding to a sound area, presents an

increase of the temperature in the first 50 frames during heating; when the lamps are

switched off the temperature decreases.

However it is clearly evident that a functional description of the intensity variations

cannot be easily generalized for the considered material and the behaviors of the

points corresponding to defective areas are not similar. For this reason we have

considered the use of a neural network trained to characterize and recognize the

temporal variations of different materials without any specific knowledge of the

resulting curves. It is only necessary to select a set of  sample points from known

defective and no-defective areas. If new classes of defects are encountered, the

approach will be able to distinguish them from  points belonging to sound material.

3. The neural network classifier

A neural network is a massively parallel distributed processor that has a natural

propensity for storing experiential knowledge and making it available  for use. The

knowledge is acquired by the network through a learning process. Interneuron

connection strengths, known as synaptic weights, are used to store knowledge [12].

The large success of neural networks derives from  their ability to solve complex
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problems that require a non-linear mapping between the input space and the output

space, and their generalization capability that allows them to produce reasonable

outputs for inputs not encountered during learning.

In this work we have used a Multi Layer Perceptron characterized by the presence of

an input layer of source nodes, a hidden layer and an output layer. The hidden layer

enables the network to extract higher-order statistics especially when the size of the

input layer is  large. Supervised learning involves applying a set of training examples

to modify  the synaptic weights connecting the neurons of the network. Each example

consists of a unique input signal and the corresponding desired response. The

network is presented many examples many times and the synaptic weights are tuned

so as to minimize the difference between the desired response and the actual

response of the network. The network training is repeated until a steady state is

reached, where there are no further significant changes in the synaptic weights.

The input layer has a number of neurons equal to the number of image features. In

this work the features are those extracted after the pre-processing phase (to be

discussed in the next section). The number of nodes in the output layer depends on

the number of classes that the network has to recognize. In our context the

considered composite material present only one kind of defect, and so the network

recognizes the sound point and the defect points (2 output nodes). The number of

nodes in the hidden layer is experimentally determined (in our context 120 hidden

nodes was the best choice).

4.Experimental results

The length of the thermographic sequence relative to the considered composite

material was 207 images.

In the experimental phase, at first, a set of training examples was fixed for the

considered composite material and the network was trained using the well known

Back Propagation algorithm [13]. In particular 20 examples belonging to the sound

area and 30 examples belonging to the defective area were selected.

After the training phase, all the points of the thermographic sequences were provided

as input to the net in order to classify them as belonging either to the sound or to the

defective area.
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In order to establish the membership class of each element of the test set, the

activation level of each output node at the end of the training procedure was

evaluated and a set of proper minimum thresholds was introduced.

In the following test phase, when the output of the net does not satisfy this minimum

threshold the correspondent test signal was classified as belonging to an ambiguous

class.

In both training and test phases, before neural analysis, the signal of the thermic

variation for each pixel was, at first, smoothed by a median filter in order to cut down

noise frequencies and then normalized maintaining all the pixel values in the range

(0,1). In this way the analysis of the thermic variations became independent from the

maximum values of the thermic curves and it can be characterized only on the kind of

the temporal variation.

This smoothed and normalized signal of the thermic variations was provided to the

input layer of the neural network.

The results for the considered composite material are shown in figure 5.

Different colors have been used to represent the results of the classification. The

regions around the defect areas are those classified as ambiguous, that actually

correspond to the contour of defects.

In order to evaluate the capability of the proposed approach to generalize knowledge

additional experiments where carried out. In particular linear lighting variations where

simulated in the test phase (leaving unchanged the training set). Linear lighting

variations had the analytic description as

IaI ×=*

where I* is the new intensity value, I is the old intensity value and a is the lighting

gain varying in the range (0,2). Figure 6 shows the classification results when a 20%

darkening (figure 6.a) or brightening (figure 6.b) was introduced. Results with

different lighting parameters were performed (50%, 90%) but are not reported in the

paper for lacking of space.

The classification performance remained satisfactory also in presence of strong

lighting variations even if, in presence of brightening, it was not always possible to

detect all the defect regions and, in addition, the uncertainty area increased.
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5. Conclusion and Future Works

A large amount of research work has been conducted using various NDT & E

techniques in the detection and identification of detects in aircraft parts. The

thermographic inspection of composite materials has been proven to be effective in

the assessment of internal defects of aircraft composites. However, no much work

has been done in the automatic inspection of the observed thermic phenomenon. In

this paper we have presented a neural approach for the automatic analysis of thermic

image sequences and the detection of internal defects of composite materials. The

system requires only the selection of a set of training examples extracted from defect

areas and sound area. The neural network is able to build an internal representation

of the mapping from the input signals to the desired output, and is able to generalize

to new situations never encountered in the training phase. Experimental results

carried out on a composite material have demonstrated the effectiveness of the

proposed approach even in presence of lighting variations.

Future work will be addressed to experiments with unsupervised classifiers to

shorten the initial training phase and recognize the defect areas and the sound area

without any example of the desired behavior.
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Figure 1– Lamps and thermocamera used for the experimental setup
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Figure 2 The structure of the composite used in the experimental phase and one of

the corresponding thermographic images.

Figure 3– Extraction of the mono-dimensional signal from the temporal sequences of

thermographic images

http://dx.doi.org/10.21611/qirt.2006.016



Figure 4 – Temperature variation of two points of the Nomex composite material

Figure 5- The classification results

a=0.8 a=1.2

Figure 6- The classification results simulating linear lighting variations
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