MODELISATION OF THE COAL PULVERISE COMBUSTION

SAADAOUI M.*, MAHJOUB SAID N.*, MHIRI H.*, LE PALEC G.**, BOURNOT Ph.**
* Unité de thermique et environnement, Ecole Nationale d’Ingénieurs de Monastir, route de
 Ouardanine 5020 MONASTIR, Tunisie
** Equipe IMFT, Institut de Mécanique de Marseille, UNIMECA, 60 rue Juliet - Curie,
 Technopôle de Château- Gombert, 13453 MARSEILLE Cedex 13, France,

The development of the clean coal techniques passes initially by the setting in
conformity of the power stations with pulverized coal, where the fuel is pulverized in
very fine dust in the crushers to facilitate combustion, is mixed with heated air and
finally injected into the combustion chamber of the vapor generator. To decrease the
emission in the atmosphere of polluting gases, one can add installations of
denitrification and/or desulphurization. These processes act either on the level of
combustion, or by a treatment of the fume.

The objective of this work is to lead and control combustion with the coal
pulverized while knowing to observe the parameters of combustion, to establish a
diagnosis, to bring the corrective actions with the permanent concern to optimize the
output of combustion and to reduce the emissions of gaseous pollutants.

This work treats the numerical modeling of the combustion of a pulverized jet
of solid combustion [1]. Our simulation is based on the resolution of the average
equations of Navier-stokes coupled with the conservation equation of the enthalpy
and the conservation of the species. For the closing of the equations of turbulence
we chose the model k-ε Standard [2]. The modelling of the reactions of
devolatilisation and combustion is made according to the model of assessment of
density of probability (PDF) [3]. We used the method of the volumes finished for the
numerical resolution of the partial derivative equations.

Bibliography