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Abstract  

Temperature and emissivity separation (TES) as applied to multispectral Thermal Infrared (TIR) images of the 
Earth surface provides temperature and emissivity, relevant parameters for Earth observation studies. Retrieval of 
temperature and emissivity is an ill-posed problem that admits infinite solutions because the number of unknowns goes 
beyond the available measurements. In this work the Maximum Entropy Temperature and Emissivity Separation 
(MaxEnTes) devoted to the retrieval of both temperature and spectral emissivity of a remote target is introduced and 
described summarizing the physical implications of the information theory and the meaning of the information entropy. 

1. Introduction 

The use of multiband TIR detectors provides the experimental determination of the ground emitted radiance iL  

in various spectral channels. This spectral radiance can be expressed as the product of the Planck law (calculated for a 
target temperature T) and the emissivity )( . For an ideal channel having bandwidth   the radiance spectrum can 

be written as: 

  







d
Tc

c
L

i

i 





1

1

2
5
1

/exp
)(       (1) 

where 2
1 2hcc  , khcc /2 , k  is the Boltzmann’s constant, h  is the Planck’s constant, and c  is the speed of 

light. Using band-integrated quantities, we can write: 

iiiii BTBL   ),()(      (2) 

with i  effective wavelength, ),( ii TBB   Planck function and )( ii    emissivity in the i -th channel, 

ni ,...,1 . As shown in several previous papers discussing this topic, the retrieval of both temperature and emissivity is a 
problem admitting infinite solutions. Different approaches have been proposed for the solution of this problem [1, 2]. 

A large effort has been devoted to develop new methodologies of fitting, and inverse modelling able to handle 
cases in which the number of unknowns exceeds the number of measurements. These procedures took the collective 
name of Maximum Entropy formalism (MaxEnt) [3, 4]. 

In this paper, an advanced temperature/emissivity separation algorithm based on the MaxEnt approach is 
presented. The method starts from the assumption that the condition of maximum entropy is the less committal 
hypothesis that can be made to overcome the lack of knowledge, preventing an algebraic solution to the temperature – 
emissivity separation problem. The general framework of MaxEnt will be depicted and the meaning of the information 
entropy in [3-6] will be discussed. Next, we describe in detail the developed algorithm for assessing target’s temperature 
and emissivity, and finally, some conclusions are drawn. 

2. MaxEnt formalism 

Using the MaxEnt methodology n  unknowns of interest (temperature and emissivity in our case) are obtained 
as expectation values of corresponding random variables. The problem of inferring these unknowns from nm   
measurements is therefore turned into the problem of assessing the Probability Density Function (PDF) of these random 
variables. Such a function is deduced requiring its entropy to be maximal, subject to a set of constraints representing the 
available experimental outcomes. 

We consider a set of possible values  ix  for a random variable x  having probability  ixp . The information 

entropy is defined as: 
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The accepted maximum entropy PDF is constrained so the expected value     xfE kxfk
  of a set of functions 

)(xfk  exactly matches the available measurements kL : 
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and E [ ] is the ensemble-average operator. Maximization of H yields the following result: 
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With Z the partition function and mll ,...,1  the Lagrange multipliers for the minimization of H, given by: 
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The extension of this formalism to the case of continuous variables can be easily attained turning any 
summation into the corresponding integral and including a metric function )(x  that makes the entropy definition 

independent of coordinate changes: 
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The MaxEnt solution for this case is summarized in the following relationships: 

 
),...,(

)(...)(exp)(
)(

m

mm

llZ

xflxflx
xp

1

11 



     (9) 

dxxflxllZ
m

k
kkm   










1
1 )(exp)(),...,(       (10) 

The goal of this work is to estimate the expectation value of both temperature T and emissivity spectrum i  

calculated in the generic i -th channels as expectation values of corresponding aleatory variables ei, t. 
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where the metric ),,...,( tee n1  defines the integration boundaries in each domain 
nEET  ,...,,

1
. Such a metric is 

used to assign a different weight to different states of the system. In the following section it will be chosen to include 
physical constraints about the expected temperature and the emissivity of the target. 

The corresponding emitted radiance measured in the i -th channel can be written as: 

),()(),( tBetLL iiiii        (13) 

The Lagrange multipliers are calculated using Eq. (7) i.e. by imposing the measured values iL  to satisfy:  

)},()({ tBeEL iii        (14) 

The above expression involves a product between the emissivity and an exponential function, where in general 

)},()}{({)},()({}{ tBeEtBeELE iiiii   . There are notable difficulties in this formulation, due to the non-analytical 

solution of Eq. (14) and to the presence of exponential of Planck functions in Eqs. (9) and (10). Moreover, the presence 
of discontinuities in the multi-dimensional domain of Eq. (14) makes problematic the convergence of the numerical 
solution. 
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3. First order approximation 

In order to calculate the coefficients mll ,...,1  the emitted radiance in the channel iL  has been expanded in a 

series stopped at the first order term: 

),()(),()(),()(),( 000000 tBetBetBettL iiiiiiii     (15) 

Defining:  
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we can write: 

tBeBeBettLttL iiiiiiiiiii   0000 ),(
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),(    (17) 

where t and ie  are new variables and 
ie0
, iB  and i  are constants fixed by the value of 0t . Within this 

approximation we can write: 

}{}{)},()({)},()({ tEBeBeEBetBeEtBeE iiiiiiiiiii   00   (18) 

The partition function may be rewritten as: 
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where ),,...,( teem n  1  is used as a metric for defining the limits of the integration domain: 
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The mll ,...,1  values can be obtained by substituting 
iL

~  in Eq. (7). Due to the fact that separate constraints on 

both temperature and emissivity don’t allow the convergence of the calculation (i.e. the solution of Eq. (7),) the solution of 
this equation is performed numerically. 

Using the probability distribution function Eq. (5), the emissivity and temperature values are finally calculated as: 
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being 
kk eee 0 minmin  for nk ,...,1  and   400 /minmaxmin TTtTT  ,   401 /minmaxmax TTtTT  .  

Since the integration of Eqs. (21) and (22) can been analytically performed, the computation speed results 
increased with respect to numerical integration allowing the application to large amount of data (i.e. spectral datacubes 
from remotely sensed images). 

4.  Temperature Range Selection (TRS) algorithm 

In order to define the variables range to be used as metric function, realistic values for the variables have to be 
defined on the basis of the expected variability of temperature and emissivity of the observed target. 

In particular, we assume that the observed brightness temperature in a generic channel is always lower than its 
real value due to the emissivity (always less than the unity). If we set maxe , mine  as the (theoretical) maximum and 

minimum accepted values of emissivity, a brightness temperature spectrum can be calculated from the measured 
emitted radiance value )(L  for both the minimum and maximum emissivity value, as: 

  801 .     ,)()( minminmin
 

 eeLBT eBM       (23) 

  99901 .     ,)()( maxmaxmax
  eeLBT =eB       (24) 
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being )(
min k=eBMT   the maximum theoretical brightness temperature (case of minimum emissivity for the 

majority of natural targets) and )(
max k=eBT   the brightness temperature for the maximum emissivity (always less than the 

unity) in each K -th channel. 
The temperature spectra )(

min k=eBMT   and )(
max k=eBT   force the target temperature between the minimum 

value of the )(
min k=eBMT   and the maximum value of )(

max k=eBT  , thus we define the admitted temperature range minT -

maxT  as: 

  KtnktTT mmk=eB       ,,...,     ,),(max
maxmin 2831       (25) 

  KtnktTT MMk=eBM       ,,...,     ,),(min
minmax 3231      (26) 

mt , Mt  being, respectively, local and seasonal minimum and maximum values used for preventing outliers. 

Using maxT , minT , the value of temperature 0t  used for the linear approximation can be defined using as . The first guess 

for the emissivity in the i -th channel is given by )()( 000 tBLee iii    with: 
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5. MaxEnTES algorithm 

The MaxEnTES (Maximum Entropy Temperature and Emissivity Separation) algorithm is made up of two 
different modules: the TRS algorithm and the MaxEnt method. The entire procedure is summarized in figure 1.  
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Fig. 1. Scheme of MaxEnTES (Maximum Entropy Temperature and Emissivity Separation) algorithm. The procedure is 

made up of two blocks: the Temperature Range Selection (TRS) and the Maximum Entropy (MaxEnt) algorithms. 
 

First the TRS algorithm is used for an estimate of the emissivity and temperature range from the radiance direct 

measurement: using as input the emissivity range maxe , mine  and the seasonal extreme temperature values mt , Mt , it 

provides minT , maxT . If maxmin TT   these values are rejected and the TRS algorithm is iterated enlarging the range maxe , 

mine  until maxmin TT  . At this point the 0t  value is calculated using the MaxEnt method and the first order 

approximation is used for determining the mll ,...,1  values defining the probability distribution function that maximizes the 

entropy (i.e. MaxEnt approach). If the emissivity spectrum overpasses maxe , the sequence of the TRS and MaxEnt is 

repeated after reducing mine . It is important to point out that, during the TRS algorithm, both the values mine , maxe  are 

updated for enlarging the emissivity admitted range. On the other hand, after the MaxEnt procedure, if the emissivity 

spectrum overpasses maxe , only the mine  value is reduced. In other words, the MaxEnTES procedure automatically 

enlarge the mine , maxe  range for emissivity until it is automatically centred on the target emissivity spectrum. 
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6. Tests and results 

Measured emissivity spectra extracted from the Johns Hopkins University Spectral Library [7] have been used 
to test MaxEnTES procedure. Two different datasets of minerals (of geological interest) and natural/artificial targets have 
been selected. The emitted radiance has been simulated by setting for the target a fixed value of the temperature, equal 
to 300° K, and calculating the corresponding Planck function. The radiance spectrum is represented by the product of the 
emissivity spectrum with the Planck function for fixed temperature value. The value in each channel (considered ideal) is 
obtained by spectral averaging. Results coming from simulations are reported in figure 2.  

 

Fig. 2. Emissivity of different mineral species of interest of natural and manmade surfaces. True values are represented 
by lines with empty markers, the corresponding emissivity values by MaxEnTES method are represented by full marker. 

The Planck functions are calculated for a temperature value of 300K for each target.  
 
The MaxEnTES algorithm reconstructs both the range and the spectral shape of the target emissivity, with the 

only exception of the magnetite (pointed out in the outliers of the scatter plot in figure 3 showing the retrieved emissivity 
values versus the true ones): the magnetite spectrum, being approximately flat, represents a mathematical difficulty in 
separating Plank function and emissivity, thus the retrieval fails.  
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Fig 3: Scatter plot of measured (true) versus calculated values of emissivity values used in figure.2 
 

In figure 4a the relative difference (%) of the first estimate temperature 0t  (black series), of the final estimate of 

the temperature (dark grey series) and maximum error on all the channels of the emissivity spectrum are represented 
while the uncertainty on target temperature retrieval is shown in figure 4b. 
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Fig. 4: (a) Relative difference (%) of the first estimate temperature t0 (black series), of the final estimate of the 

temperature (dark grey series) and maximum error on all the channels of the emissivity spectrum. (b) Temperature 
difference (left vertical axis, diamond marker) and relative error (expressed in %, right vertical axis, full round markers) 
between true and retrieved temperature. Gypsum emissivity spectrum at constant temperature of 300K has been used. 

 
The robustness of the MaxEnTES procedure towards noisy input has been tested by adding a random noise 

with uniform distribution in the radiance spectra in input. For different values of temperature a statistically relevant set (~ 
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1000) of spectra has been generated. Then the MaxEnTES method has been tested on these spectra for retrieving both 
temperature and emissivity using sets obtained from different noise standard deviation. The result of these tests is shown 
in figure 5 where the relative error on temperature and emissivity as a function of the signal – noise ratio of measured 
radiance are provided.  

 

Fig. 5: Relative error on temperature (continuous line with round markers) and emissivity (segmented line with diamond 
markers) as a function of the signal – noise ratio of measured radiance (also the relative error is provided). 

 
The gypsum emissivity spectrum calculated for different values of the temperature has been used as target. 

Random noise with uniform distribution has been added to the set of input radiances (1000 spectra for each value of the 
noise standard deviation). 

7. Conclusions 

The MaxEnTES procedure results accurate in reconstructing both the emissivity of the observed target and its 
temperature. The algorithm also shows robustness towards the noise and it is resistant to high-contrast spectral data. 
Moreover, its analytical formulation makes computationally fast the implementation for large amount of data (i.e. 
hyperspectral images). 

The TRS procedure, by itself, provides an optimal first guess of the temperature, allowing the search for the 
maximum entropy probability distribution to converge to the correct value. 

Future activities will be dedicated to the test of algorithm on natural remotely sensed data and the verification of 
results through an on-field validation campaign. A further improvement could be represented by the use of a non-sharp 
metric (i.e. a “smoothed” function instead of the one that defines the integration boundaries), allowing the weighting of 
the possible states of the system in a more physically realistic way. 
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