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Abstract 

The paper presents a numerical method to detect and characterise defects and inhomogeneities by means of 
active thermography. The objective is to determine the wall thickness of structure elements with an inaccessible back 
wall, e.g. of pipes or containers. As test specimens we used 2 cm thick PVC samples with flat bottom holes in the back 
wall. Flash lamps provided the heating. The inversion method is the Levenberg-Marquardt method, which starts by a 
rough first guess of the back wall geometry using the echo defect shape method, and then the PVC thickness of 
specimen profiles was calculated. We validated the result by comparing the measurement data to simulated data for 
selected geometries. 
 
1. Introduction 
  

Active thermography like impulse-thermography is popular because it allows inspecting the structure very 
quickly. The application of flash lamps is common: This technique consists of a short light impulse radiated from flash 
lamps and heating up the structure element. By analysing the surface temperature we can detect inhomogeneities: the 
surface temperature decays as long as the heat can flow into the interior. To obtain not only qualitative, but also 
quantitative data, an overview of methods for data analysis of flash excitation is given in Maldague [1], Sun [2] and Omar 
[3].  

In this paper, we discuss in detail the performance of an iterative reconstruction algorithm, depending on the 
number of iteration steps and on the shape characteristics. The applied algorithm is an optimised version of a classical 
method for inverse problems. Why do we have an inverse problem inhere? We measure the effect of a physical process, 
i.e. the devolution of the intensity of thermal radiation of the surface after a flash excitation, but we are interested in the 
cause of this physical process: The exact geometry of the test specimen. From this point of view, inverse problems offer 
the perfect tool kit for tackling this challenge.  

In the work presented herein, we reconstructed back wall geometries using an inversion method based on the 
minimisation of the linearised problem within a trust region: the Levenberg-Marquardt method [4]. 

The advantages of the Levenberg-Marquardt method are  
1) this method uses the information of the whole time interval, not only the temperature for a certain time 
2) lateral heat diffusion effects are considered  
3) the convergence behaviour is well understood, classified and trustworthy (in a theoretical and general sense)   
4) this method has proven its reliable applicability in other areas and is very popular, like e.g. in geophysics [5]  

 
 
2. Numerical methods for reconstructing the wall thickness 
 

For yielding the quantitative information of the wall thickness, we applied an inversion method. Figure 1 
presents the general principle of the complete procedure. 

 
 

Figure 1: The complete inversion procedure 
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First, we are performing measurements yielding experimental data, from which we are calculating an initial back 

wall geometry using the echo defect shape method [6]. Second, we simulate the temperature devolution (forward 
calculation) for the assumed structure profile by using the FEM based software COMSOL. Third, by comparing the 
results of simulation with the experimental data, we change the back wall geometry by an inversion method 
(reconstruction using Levenberg-Marquardt method). The forward calculation and the reconstruction are done iteratively. 
Finally, the circle is stopped after 40 iterations, as the geometry changes stagnated. Within the algorithm, the maximum 
possible sample thickness was fixed (first a priori knowledge). 
 
2.1 Initial geometry using the echo defect shape method 
 

To obtain a rough idea of the back wall geometry, we applied the echo defect shape method, for details see 
Lugin [6]. To derive this depth formula, the analytical 1D solution for the heat equation is calculated for a specimen with 
semi-infinite thickness which is exposed to a Dirac delta pulse heating on the front. The 1D thermal wave model 
declares, that for a specimen with given finite thickness z, reflection of the thermal wave on the back occurs and leads to 
a temperature increase )()( tTtT referencedefect −  at the front which is equal to the temperature of the semi-infinite 

specimen at the depth 2z. Assuming )(tTreference  is equal to the temperature of the semi-infinite specimen at the front 

and considering the relative temperature increase   
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with respect to a defect free reference area, the specimen thickness can be evaluated by  

 

))(ln(( tCtaz rel−⋅⋅= .          (2) 

 
The variable T denotes the temperature difference to room temperature, t  is the time elapsed after the delta pulse 
heating, and a is the thermal diffusivity of the material. Eq. (2) is evaluated for the time t, for which the relative contrast 
reaches a chosen benchmark value. We predisposed the quite small benchmark 035.0=relC , as the relative contrast 
of even deep defects should reach this benchmark, although the noise of the experimental data spoiled certain reference 
areas.  

To conclude, the echo defect shape method is here applied as Eq. (3): If t is the first time, for which 
035.0=relC  is valid, then we can evaluate the thickness with 

 

       ))035.0ln((−⋅⋅= taz .     (3) 
 

As the echo defect shape covers only the effects of 1D heat flow, we enhanced the back wall geometry of 
interesting profiles with an iterative method (see next chapter). For these calculations, it was helpful to notice, that the 
specimen was best reconstructed where the specimen was thinnest compared to its close surroundings (second a priori 
knowledge).  

 
For quantifying the general accuracy of the calculated geometry z of a profile, we expressed the error on 

average by the arithmetic mean: 
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where ir  is the thickness of the real geometry (at the i-th front point), iz  the calculated geometry and n the number of 
surface points along a measurement line.  

 
 

 
2.2 Reconstruction using the Levenberg-Marquardt method 
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To describe the Levenberg-Marquardt method easily, we explain it on a simple defect. First, we need to define 

here the forward problem. Let us consider a 15 cm long and 15 cm wide 3D specimen with varying thickness between 2 
and 0.3 cm with a notch shaped defect, see figure 2.  

 
 

 

                                          
Figure 2. The flat-bottom hole sample in 3D  

 
 
Our goal in this work is a 2D reconstruction, i.e. the initial 3D geometry was sliced at its defect centres. Thus, let us 
consider a 15 cm long specimen profile with varying thickness between 2 and 0.3 cm, see figure 3. We describe the back 
wall by a finite number of points and interpolate the thickness linearly in between. To show easily the principle, we 
explain here the example for 15+1 equidistant sampling points on the 15 cm long front, i.e. we have sampling points with 
1 cm distances. 

 
 

Figure 3. Example of a back wall geometry (grey circles) given by the thickness at 15+1 sampling points at the 
front (black circles) 

 
 
We were able to measure or simulate the temperature devolution after flash heating for a given specimen with a given 
back wall, e.g. )2,2,2,2,2,2,5.1,9.0,3.0,9.0,5.1,2,2,2,2,2(=realz as shown in figure 3. The temperature devolution 
of the experimental data had a discrete formulation, as we measured with 475 pixels (FPA IR camera) on the profile front 
and on discrete points in time. I.e. for each second of the time interval [0, 600] s, we recorded the spatial temperature 
devolution on the profile front. We align the temperature devolution T in a vector with (475x601) entries: first the temporal 
temperature devolution of the first pixel, then of the second pixel, and so on, see figure 4.  
 
 

 
Figure 4. T begins with the temperature for the time interval [0, 600] s for the first pixel, and it continues with the 

temperature for the same time interval for the second pixel (and so on). T denotes the measured spatial and temporal 
temperature devolution (as difference to room temperature). 

 
The vector function F labels the relation of a given back wall realz   to the respective temperature devolution T. Thus, 

,...)54.2,23.3,29.13,...,54.2,24.3,30.13()( ==TzF real , all vectors are column vectors. Using either simulated or 
measured T values, in both cases, F describes the solvable forward problem.  
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Reversing the forward problem means reconstruction: How can you reconstruct realz , when T is given by the 

experiment? The inverse function 1−F  for realzTF =− )(1  is unknown, thus, a linearisation of F  was considered, 
leading to the iterative Newton type method1: 
 

      (5) 
The initial geometry 1z , was computed by the echo defect shape method Eq. (3) on the experimental data, and was 

meant to be enhanced in each iteration step of the Levenberg-Marquardt method, such that the k-th geometry kz  

converges to the real back wall geometry realz . In each iteration step k, the comparison of simulated and measured 

temperature data ))(( kzFT −  yields a correction of the back wall. The deviation ))(( kzFT −  is weighted by the 

derivative )( kzF ′ , which is marked by a superscript +, meaning it is pseudo-inverted (analogue to the reciprocal of a 
real number). 

In a nutshell, the derivative )( kzF ′  describes the change of the thermal behaviour for tiny changes in the k-th 

geometry kz . We have performed the time consuming calculation of the derivative only for certain iteration steps, e.g. 

the initial geometry 1z . Going more into details, the derivative )( 1zF ′ , at the geometry ),,,,( 1
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in its i-th row and j-th column. The low index of z designates the iteration step, the high index designates the relating front 
point number. The i-th information iF  of the temperature devolution is the temperature at one of the 475 front points for 

a certain point in time. For example, 1F  is the temperature at x = 0 cm and t = 0 s, 2F  is the temperature at x = 0 cm 

and t = 1 s, and 602F  is the temperature at x = 1 cm and t = 0 s. As )( 1zFi  denotes the temperature for the specimen 

with back wall geometry 1z , ),,01.0,,,,( 1
16

11
3

1
2

1
1 zzzzzF j

i KK −  denotes the temperature for the specimen with 

back wall geometry ),,01.0,,,,( 1
16

11
3

1
2

1
1 zzzzz j KK − , e.g. with a 0.01 cm thinner back wall at the 4th sampling 

point if j = 4, see figure 5 (to the left). In reality, we are interested of a finer resolution of the thickness information. In 
figure 5 (to the right) and 6, we see the analogue for sampling points in 0.1 cm distances, which was crucial for the good 
performance of the algorithm. 
 
 

                                        
 
                                                 
1 The special case, finding the root of a real function, is known as Newton iteration and converges quadratically, if the 
initial value is “close enough” to zero. 
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Figure 5: To the left: The initial geometry (red) was given for sampling points with 1 cm distances. The tiny change 
(yellow) of the initial geometry was applied for the sampling point at x = 3 cm width (to determine the 4th column of the 

derivative). 
To the right as to the left, but the initial geometry was given for sampling points with 0.1 cm distances (and to determine 

the 31th column of the derivative). The arrows sketchily show the change of thickness at the neighbouring sampling 
points. 

 
 

 
 

Figure 6. It shows figure 5 (to the right) from afar. Tiny change (yellow) of the initial geometry (red) at x = 3 cm, 
given for sampling points with 0.1 cm distances.  

 
The described difference method is time consuming: To calculate )( 1zF ′  for sampling points in 0.1 cm 

distances, we would need one simulation for 1z  and 151 simulations for the geometries with tiny changes of 1z . With 
the third a priori knowledge of the defect location within x = [2, 13] cm, we diminished the number of simulations. But the 
calculation of the derivative )( 1zF ′  is still time consuming, and we applied this method only in the 1st and 21th iteration 
step. 

To determine the derivative in the latter iteration steps, we chose the time efficient approximation using 
Broyden’s method; for convergence research see [4]. Resulting from the secant equation, a known derivative at kz  

defines the derivative at 1+kz  in the following iteration step by the matrix equation Eq. (7) 
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where a superscript T labels the transposed vector. As it requires no further simulation, Broyden’s method delivered 
results after a few seconds instead of several hours.  

For mitigating the disturbing impact of noise, the iterative Newton type method has to be regularised for this 
application. The Tikhonov regularisation [7] is well-known as a classical regularisation for its so-called mathematical 
optimality. As we considered an ill-posed problem and had noisy data, we modified the pseudo-inverted matrix  
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by  
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where α  is a regularisation parameter adjusted to the signal-to-noise ratio, I is the identity matrix, and a superscript T 
labels the transposed matrix. We see: the larger we chose the parameter α , the stronger the Tikhonov regularisation 
Eq. (9) deviates from the pseudo-inverted matrix Eq. (8). That means here, the geometry changes less and the inversion 
is immune to noise. 

The iterative Newton type method Eq. (5) combined with Tikhonov regularisation (9) is known as Levenberg-
Marquardt method Eq. (10):  
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We optimised the regularisation to our application by choosing split regularisation parameters, depending on the 
sampling point (taking advantage of the second a priori knowledge). We chose a strong regularisation with a large 
parameter 300=α  for the sampling points where we wanted to preserve the initial value in thickness. For the other 
sampling points, we chose little regularisation with 80=α . Here, the considered time interval was limited to [10, 600] s, 
due to unreliable simulation data in the first seconds.  
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3. Evaluation 
 
3.1 Test specimen and experimental set-up 
  

We chose the material PVC, as we aimed a basic research: our first test phase of Levenberg-Marquardt on 
experimental data. PVC has an excellent emissivity and absorption coefficient of 0.96 without any surface treatment and 
a small thermal diffusivity (100 times smaller than the diffusivity of steel), which led to a slow thermal progress, and, thus, 
to a high signal-to-noise ratio by taking the average in time. We constructed two specimens with three flat bottom holes 
with remaining wall thicknesses of 0.15 cm, 0.3 cm, and 0.6 cm and diameters of 1.2 cm and 0.8 cm, respectively, see 
figure 7.  

 
 

   
 

Figure 7: To the left: Specimen FBH12 with three flat bottom holes with diameter of 1.2 cm in a 2 cm thick, 15 cm wide 
and long PVC block. The remaining wall thicknesses are 0.15, 0.3 and 0.6 cm.  
To the right: Specimen FBH8 same as FBH12 with holes of 0.8 cm diameter. 

 
We measured in reflection configuration: On the defect free front of the specimen, we temporarily heated up 

with two flash lamps (about 2.5 ms) and measured the temperature distribution during and after heating as a function of 
time using an infrared camera. Here, an InSb camera was combined with a lens with a focal length of 10 cm. The array 
size of the camera was 640 x 512, but only a frame size of about 475 x 475 pixels was analysed here. The frame rate 
was 93 Hz; after averaging 93 frames, the frame rate resulted to 1 Hz. Figure 8 shows the experimental set-up (to the 
left). For guaranteeing a more homogenous heating and for increasing the signal-to-noise ratio, we averaged 4 
measurement cycles of the rotated PVC, such that, in the corresponding measurement cycle, the flash F2 provided a 
stronger heating on the right half, down half, left half and upper half of the PVC front. Figure 8 (in the middle and to the 
right) shows examples of the recorded temperature on the specimen 120 s after the flash, which displayed the best 
spatial contrasts; we subtracted a thermogram recorded before heating for minimising errors due to reflections on the 
specimen or an inhomogeneous initial temperature distribution.  
 

                            
 
Figure 8: To the left: Sketch of the experimental set-up in reflection configuration. F1 and F2 are the flash lamps and c is 

the infrared camera.  
In the middle: The thermogram of the heated FBH12 specimen, 120 s after the flash, showed the temperature difference 

in K of the specimen related to room temperature (after averaging 4 measurement cycles, but before Gauss filtering).  
To the right: The thermogram of the heated FBH8, 120 s after the flash, showed less contrasts as the holes had a 

smaller diameter.  
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Figure 9: Another display of the data of figure 8, to compare the thermograms with the defect widths in figure 7. 
To the left: The thermogram of the heated FBH12 specimen, 120 s after the flash. 

To the right: The thermogram of the heated FBH8, 120 s after the flash.  
 

 
By applying a Gaussian lowpass filter in space and time, we increased the signal-to-noise ratio of the data. The 

Gaussian filter in space had the standard deviation = 40 applied on 15 neighbouring values, and in time it had the 
standard deviation = 200 applied on an increasing number of neighbouring values (increasing in the time interval from 30 
to 110 s from 0 to 80 neighbouring values). By evaluating this spatial and temporal temperature distribution, we 
reconstructed quantitative information of the back wall geometry. 
 
 
3.2 Evaluation of the combination of the echo defect shape and the Levenberg-Marquardt method  
 

 We evaluated the Levenberg-Marquardt method for its reconstruction performances. We chose 
supporting points with 0.1 cm distances, a requirement for a sufficient spatial resolution. Using the echo defect shape 
method Eq. (3), we got a first guess of the thickness, the initial geometry for the Levenberg-Marquardt method, see figure 
10. As the required reference area, we chose a 3 mm x 3mm square at width x = 10 cm and length y = 10 cm. All defect 
centres are located well and with the correct depth z, but the defect diameter is two times bigger than the real diameter. 
The defect-free area of FBH12 around the width x = 12 cm is assessed as flawed due to noise. 
 
 

 

 
 

Figure 10: The initial geometry of specimen FBH12 (left) and FBH8 (right) before filtering it. All defects are located with 
the correct depth z, the defect diameter is two times bigger than the real diameter.  

 
The 3D initial geometry was smoothed with a Gaussian filter with standard deviation = 40 applied on 2x2 

neighbours, omitting the areas which we wanted to treat with care (see second a priori knowledge). By the Levenberg-
Marquardt method, we enhanced the two profiles at length y = 5 cm and y = 10 cm, to reconstruct the two near-surface 
defects and the deep defect respectively. The 2D geometries in the 1st and 21st step of the Levenberg-Marquardt method 
were smoothed with a Gaussian filter with standard deviation = 40 applied on 15 and 5 neighbours respectively, in order 
to calculate a meaningful difference quotient at sharp edges of the defect. By omitting the smoothing, a sharp edge 
would prevail, and we would reconstruct a thin fissure, additionally to the defect. The derivative was calculated by the 
difference quotient only at the 1st and 21st iteration step and approximated by the Broyden’s method at the other steps. If 
we had used the difference quotient only for the 1st step, the geometry enhancement would stagnate after about 20 
steps, thus the reconstruction would be worse, especially at the reference area close to the defects. After 40 iteration 
steps, the reconstructed geometry was set as defect-free at all areas where the initial geometry (before the 2D 
smoothing) was defect-free, too. 

 
 To conclude, we see the real geometry, the initial geometry (before the 2D smoothing) using the echo defect 

shape method Eq. (3), and the resulting reconstructed geometry after 40 iterations using the Levenberg-Marquardt 
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method in figures 11-14. Near-surface defects are well reconstructed, see figures 11 and 12, i.e. we did well 
reconstructions for the test specimen profiles at length y = 5 cm. 

 

 
Figure 11: Specimen FBH12 profile at length y = 5 cm; its real geometry, initial geometry and reconstruction in 2D. 

 

 
 

Figure 12: Specimen FBH8 profile at length y = 5 cm; its real geometry, initial geometry and reconstruction in 2D. 
 

Near-surface defect depths at x = 5 and 10 cm are well reconstructed and differ in average only by 0.043 cm, 
i.e. by taking the error Eq. (4) only for i = 51 and 101. The reconstructed defect width is satisfying for y = 1 cm, the initial 
width was more than double. The defect width, close to the surface, is too thin, and close to the back, it is too wide. We 
conclude, that sharp defect limitations are challenging.  

In figures 13 and 14, we see the deep defects with a diameter of 1.2 and 0.8 cm, respectively. Figure 13 shows 
an enhancement of the geometry in the defect widths, but a slightly worse defect depth. 

 

 
 

Figure 13: Specimen FBH12 profile at length y = 10 cm; its real geometry, initial geometry and reconstruction in 2D. 
 

 
 

Figure 14: Specimen FBH8 profile at length y = 10 cm; its real geometry, initial geometry and reconstruction in 2D. 
 

The thinnest and deepest defect in figure 14 challenged the algorithm and showed the limit of the current state 
of the applicability. The initial geometry enhanced in the first 20 iteration steps (in the sense of error Eq. (4)), although 
the defect depth at x = 5 cm deteriorated. But the difference quotient in iteration step 20 forced a deteriorating depth 
profile using Eq. (4), apart from an even more deteriorating defect depth. To understand this undesired effect of the 
inversion, we discuss the belonging simulated temperature devolution. 
 

The experimentally obtained temperature are shown in figure 15, to the left; for t = 60, 120, and 240 s after the 
flash, at the front side of the FBH8 at length y = 10 cm, filtered as described in chapter 3.1 and expressed as the 
difference to room temperature. Figure 15, in the middle and to the right, we show the simulated temperature for the real 
geometry and for the reconstruction, respectively. 
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Figure 15: Temperature devolution of specimen FBH8 on a front line at length y = 10 cm. 
To the left: experimentally obtained temperature 

In the middle: simulated temperature of the real geometry profile  
To the right: simulated temperature of the reconstructed geometry of the  

 
 In the experiment, we see the scarcely visible spatial contrast of 0.015 K (to the left, brown line) – up to 200 

times less than for the near-surface defects. In the simulation for the same geometry, we see spatial contrasts of 0.05 K 
(in the middle, brown line). Additionally, in the defect-free area, at x = 10 cm, the simulated cooling is slower than in the 
experiment – the difference to the experiment increased up to 0.02 K with increasing time. This shows we have general 
discrepancies between simulation and experiment. In the simulation for the reconstructed geometry, we miss a visible 
spatial contrast (to the right, brown line).  

We concluded that defects of this small size are sensitive to the discrepancies between our simulation and the 
experiment, such that it handicapped the reconstruction performance. One reason for the discrepancy is the theoretical 
disadvantage of the efficient 2D simulations, which neglect any heat loss in the missing length dimension. In our case, 
we neglected the lateral heat loss from the defect middle point at x = 5 cm to its surrounding in length dimension 
(i.e. 010±=y ). This might have led to an excessively diminished defect volume. 

 
3.  Conclusion and outlook 

 
We reconstructed back wall geometries of different PVC flat-bottom hole samples. The thickness of the 3D 

reconstruction by the echo defect shape method, was enhanced for 2D profiles using Levenberg-Marquardt method, an 
iterative inversion algorithm. The remaining wall thicknesses at the defect centres were well identified by the echo defect 
shape method. The Levenberg-Marquardt method enhanced especially the defect width, as it integrates lateral heat flow. 
The sharp defect geometries were challenging and led to the idea, to adjust the definition of derivation, such that even 
the reconstruction of defects with undercutting is a goal, in future time. For the reconstruction of very deep and small 
defects, like a flat-bottom hole with diameter of 0.8 cm and remaining wall thickness of 0.6 cm, we suppose, that 
adjustments in the simulation model might lead to enhancements in the inversion procedure. 
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