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Abstract 

In this article a new approach for 3D reconstruction of thermal scene is presented. The system consists of two 
cameras: thermal and visual. The reconstructed object is observed from at least two different viewpoints by the two 
cameras. The two images either from thermal camera or visual one constitute a stereoscopic set. By means of 
corresponding feature points extracted from the pair of either thermal or visual images, the relative position of the two 
viewpoints is evaluated. Then the images are rectified and the standard stereo reconstruction is performed on either 
thermal or visual images depending on the scene conditions, i.e. depending on the number and quality of feature points 
extracted from the thermal and visual pairs. The relative position of the two viewpoints is established only up to some 
scalar factor. To establish the relative position with respect to some metric value two approaches were applied: (a) based 
on a known distance between two points in 3D space and (b) based on an additional approximate 3D reconstruction of a 
given point by the thermal and visual camera pair treated as a stereoscopic set. The designed application which 
performs the calibration of the system and 3D scene reconstruction is described and the obtained results are presented. 

1. Introduction  

Common 3D reconstruction visual systems usually consist of at least two cameras known as a stereoscopic set 
[1,2,3]. In order to perform a 3D reconstruction of thermal scene such visual stereoscopic systems are coupled with 
thermal camera [4,5,6,7,8]. It is presumed that the system is calibrated i.e. intrinsic parameters of each camera including 
the thermal one are known and that the relative positions between all cameras in the system are known [8]. Under the 
above conditions a 3D reconstruction of a thermal scene is straightforward: 3D coordinates of an object reconstructed by 
means of the stereoscopic set are remapped onto the image from thermal camera. The systems consisting of a pair of 
visual cameras and a single thermal camera are quite well documented [4,5,6,7,8]. On the other hand some authors [2] 
propose another approach i.e. stereoscopic set consisting of two thermal cameras. The main disadvantages of such 
systems are their complexity and the requirement of a specially designed tripod on which all required cameras should be 
installed. 

In this article a novel approach, based on an integrated set of a single thermal and a single visual cameras is 
presented. Instead of a stereoscopic set a single camera is used for acquisition of two images of the same object from 
two different viewpoints. Depending on the observation conditions the system can use a pair of visual or thermal images 
to perform the 3D reconstruction. 

2. 3D reconstruction by means of stereoscopic set of cameras 

3D reconstruction of an observed scene by means of a stereoscopic set of two cameras is well known and 
documented [1,2,3]. A point P of an object can be localized in 3D space if two following conditions are met: (1) a point P 
is visualized in both cameras; (2) the cameras are calibrated i.e. their intrinsic and extrinsic parameters are known. 
Extrinsic parameters of a stereoscopic set are defined by 3x3 rotation matrix R and 3-dimensional translation vector T 
describing relative position of the two cameras. Intrinsic parameters describe the relation between 3D metric coordinates 
of visualized point and its respective image coordinates given as pixel position on camera's detector array [1,2,9]. 

The simple pin-hole model of camera is presented in figure 1a. The figure 1b shows the relation between metric 
coordinate system x, y of the image plane and the pixel array xp, yp of the camera sensor. The intrinsic parameters are 
grouped in the camera matrix relating pixels coordinates p(xp,yp) to 3D space coordinates of visualised points P(X,Y,Z) in 
the following way: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Z
Y
X

cf
cf

y
x

Z yy

xx

p

p

100
0

0

1
      (1) 

 
Where fx = f / hx , f – focal length of the camera lens; hx – horizontal size of the pixel, fy = f/hy, hy – vertical size of 

the pixel, cx,cy coordinates of the center of the image plane. 
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a)                                                                         b) 
 

Fig. 1 a) Pin-hole model of a camera. b) Relation between the metric coordinate system of image plane of the camera 
and the pixel array of the camera sensor 

Figure 2 shows the principles of 3D reconstruction by means of a stereoscopic set of cameras. The point Pw is 
projected on the two image planes located in two different positions related by means of rotation matrix R and translation 
vector T. The relation between points in the coordinate systems of the first and the second cameras is as follows: 

 
P = RP’ + T        (2) 

 
Where P = [X,Y,Z]T, P’ = [X’,Y’,Z’]T are 3D point coordinates with respect to first and second camera coordinate 

systems. 3D reconstruction refers in this case to evaluating either P or P’ knowing the image coordinates p, p’ in both 
views, relative position defined by R, T and the cameras matrices (defined by Eq. (1)) or one single camera matrix 
depending on whether the stereoscopic set consists of two different cameras or one single camera in two different 
positions. 

 

 
 

Fig. 2. Stereoscopic set of cameras. Point Pw is visualised in two image planes located in two different positions related 
by means of rotation matrix R and translation vector T 

 

3. Description of the system 

In the presented approach it is assumed that the thermal and visual (if present) cameras are integrated and 
calibrated. Yet, the 3D reconstruction procedure is performed on image pairs given either by a thermal or a visual 
camera which are put in two different viewpoints (figure 3). The two thermal or visual images constitute stereoscopic pair 
which is only calibrated according to intrinsic parameters but not according to extrinsic ones because the matrix R and 
vector T of the same camera placed in two different positions are unknown. 
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Fig. 3. 3D reconstruction with an integrated set of visual and thermal cameras located in two different positions. There 
are two stereoscopic sets: RTT’,TTT’ – consisting of thermal camera observing the reconstructed object from two different 

viewpoints; RVT,TVT – consisting of integrated visual and thermal cameras 

 
The reconstruction procedure consists of following steps:  

1. Localization of feature points in thermal image and visual image for the first position of the set. It is worth notifying 
that depending on the scene, thermal image or the visual one can be more abundant with feature points. 

2. The localized feature points are tracked in the respective images for the second position of the set and thus the 
correspondence between feature points for the two viewpoints is established. 

3. The rotation matrix R and translation vector T are extracted either from homography matrix H or essential matrix 
E depending on the shape of the scene [2]. If the visualized feature points belong to the same plane in 3D space 
then the homography matrices are computed for each set of corresponding feature points: one homography HT for 
thermal feature points’ pairs, one HV for the visual. If the visualized feature points are not from the same plane in 
3D space then the essential matrices ET and EV are computed instead of the H matrices. For both sets of feature 
points pairs: visual and thermal and respective HT, HV or ET, EV matrices a reprojection error is computed. The 
outliers of corresponding feature points used for evaluation of respective matrices are removed by means of 
RANSAC method [2,9].  

4. The initial matrix R and vector T are extracted from either E or H with the smallest reprojection error and then 
refined by gradient descent method. The vector T is extracted up to a scaling factor. In order to scale the vector T 
two methods are proposed (figure 4): (a) based on a known distance between two points in 3D space and (b) 
based on an additional approximate 3D reconstruction of a given point by the thermal and visual camera pair 
treated as a stereoscopic set.  

 

4. Scaling the translation vector 

As it was mentioned earlier, in order to scale the translation vector T two methods are proposed. The drawback 
of the first method based on known distance between two points is that the image coordinates of the points must be 
known for both positions of the camera (figure 4a) – in the presented case the image coordinates were just marked 
manually by the user of the application.  

In the second case (figure 4b) it is necessary to reconstruct at least one point by establishing its image 
coordinates both in visual and thermal images, as it is assumed that the thermal and visual cameras are calibrated 
against each other i.e. their relative position is known. On the other hand, the point can also be reconstructed basing on 
its image coordinates taken from both positions of the same camera (thermal or visual), but only up to an unknown scale 
factor. Comparing two reconstructed point 3D coordinates provided by means of the two stereoscopic sets (RVT, TVT and 
RTT’, TTT’ ) the scale factor can be evaluated.  

The reconstruction of 3D points with a stereoscopic set consisting of visual and thermal cameras is not 
straightforward as not all the points of interest are visible in both images. To improve the reconstruction efficiency a novel 
method of establishing the correspondence between thermal and visual images is proposed. It is assumed that the pair 
consisting of visual and thermal images is rectified and therefore the corresponding points pV, pT representing some point 
P in 3D space must lay on the same horizontal lines in both rectified images. The method consists of the following steps:  
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1. From both images, thermal and visual, contours are extracted. A single 
contour is defined as polygon i.e. a sequence of vertices. Extracted contours from the thermal image are compared 
with the ones from the visual image. 

2. The compared contours are assumed to be matched if their corresponding 
top and bottom boundaries are on the same horizontal lines. 

3. From pairs of contours matched in this way, corresponding points are 
extracted. It is assumed that the corresponding points are located in the middle of the line segments connecting two 
vertices of contours if the difference of vertical components of vertices’ coordinates is high enough. 

4. For the matched contours from visual and thermal pair the corresponding 
contour and the corresponding point from that contour is found in the image from the camera located in the second 
position. If the evaluation of the camera displacement was done by means of feature points from the thermal 
images (as it is assumed in the figure 4b) then two correspondences for two stereoscopic sets are established: pT, 
pV and pT, p’T; the first correspondence provides 3D reconstructed point up to some scaling measure while the 
second one provides the 3D reconstructed point up to undefined scaling factor. 

 
 

   
a)                                                                    b) 

 
Fig. 4. Scaling the translation vector TTT : a) based on a known distance between two points P1, P2  in 3D space b) based 

on an additional approximate 3D reconstruction of a given point P by the thermal and visual camera pair treated as a 
stereoscopic set with RVT,TVT extrinsic parameters and pT and pV image coordinates. 

5. Results 

The proposed method was implemented in C++ using the OpenCV library [6]. The thermal camera used in the 
system was InfraTec VarioCam®, of 640x480 resolution. The used thermal camera is manufactured with integrated visual 
camera but it was not possible to get access to visual images by means of SDK delivered by the producer; therefore additional 
fixed camera, PointGrey Fly was used instead. Figure 5 shows the set of cameras mounted on special tripod used as a test 
bed of a 3D reconstruction concept presented in this paper.  

 

 
 

Fig. 5.  Three cameras (two visual one thermal) used as a test bed of the presented method of 3D reconstruction. 

In the system presented in figure 5 only the rightmost visual camera (the one fixed closer to the thermal 
camera) belongs to the visual-thermal stereoscopic set for evaluation of the aforementioned scaling factor. The second 
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visual camera is used to constitute classical stereoscopic set used for the verification of the results obtained by the 
proposed method. 

The whole system of the cameras was calibrated using a set of algorithms provided by the OpenCV library [9]. 
The algorithms were implemented and integrated with specially designed graphical user interface by means of Builder 
C++ IDE. Figure 6 shows the user interface of the application during the calibration of a stereoscopic set consisting of 
visual and thermal cameras performed using a special calibration object. The calibration object has a typical chessboard 
[3,5,6,9] pattern with white squares covered with aluminum tape to lower the infrared emissivity to make the chessboard 
clearly visible in the thermal image. The temperature of the object was increased by the radiator put behind the board.  

 

 

Fig. 6.  User Interface of the application designed for calibration, acquisition and 3D reconstruction. 

A calibration board was also used as a test object for acquisition of feature points with planar distribution and 
other non-planar objects were used to get feature points in 3D general positions. In figure 7a and 7b the images from 
thermal camera placed in two different positions are presented. The pair of the images a), b) is rectified [9,10] (the 
corresponding points are on the same horizontal lines) and is used for 3D reconstruction. The small white crosses 
indicate the feature points found in the original position of a camera (fig. 1a) and tracked with the camera moved to 
another position (fig.1b). The indicated feature points were found on the images before rectification as the rectification 
process is the result of evaluation of the camera displacement. Rotation matrix R and translation vector T describing the 
change of camera position were extracted from homography matrix H estimated by means of equation set derived from 
corresponding feature points coordinates. Refined values of the translation vector T and rotation vector describing 
rotation axis derived from R are presented in table 1. The extrinsic parameters after refinement with gradient descent 
method were evaluated with reprojection error e=0.047. 
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Fig. 7. a) rectified thermal image given by camera in the first position, b) rectified thermal image given by 
camera in the second position, c) visual image given by camera in the first position d) thermal image given by camera in 

the first position before rectification 

 

Table 1. Extrinsic parameters describing change of camera position 

 
 
 
 
 
 
 
 
To evaluate the accuracy of the 3D reconstruction by means of the proposed method four characteristic points 

were reconstructed PT1, PT2, PT3, PT4. Figures 7a and 7b show the reconstructed points on the rectified pair of the 
thermal images; figure 7c shows the reconstructed points re-projected on the thermal images of the camera in the first  
position before rectification and the figure 7d shows the reconstructed points re-projected on the visual image of the 
camera constituting stereoscopic set with the thermal one.  Tables 2 and 3 present the results of the reconstruction of the 
four points by means of three different stereoscopic sets: a) stereoscopic set provided by two rectified images from 
thermal camera in two different positions, b) stereoscopic set consisting of integrated visual and thermal cameras and c) 

Translation Vector [183.6, -10.8, 7.6] 
Rotation Vector [-0.212, 0.946, 0.244] 

Length of rotation vector expressing the angle of rotation [º] 4,9 
Reprojection error 0,047 
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classical stereoscopic set consisting of two visual cameras. Table 2 compares the 3D coordinates of the reconstructed 
points for the stereoscopic sets while the table 3 compares the distances between the reconstructed points. As the real 
distance between all four points was the same and equal 180mm, comparing the real value with the one from the table 3, 
the quality of reconstruction can be assessed. Table 4 compares the lengths of the bases of the three stereoscopic sets, 
where the base of the stereoscopic set is defined as the length of the translation vector between the cameras. In the 
case of a single thermal camera operating from two different viewpoints the base was scaled by means of the single 
reconstructed point by thermal-visual stereoscopic set. 

Table 2. 3D coordinates of reconstructed points X,Y,Z [mm] 

Point no Single thermal camera Thermal-visual set Visual-visual set 

PT1 [37.2, -192.1, 1520,1] [37.5, -193.4, 1541.1] [34.8, -184.8, 1487.9] 

PT2 [187.2, -169.3, 1416.4] [193.1, -170.6, 1455.2] [182.9, -163.5, 1392.4] 

PT3 [130.4, -0.5, 1348.3] [132.5, 2.9, 1366.7] [131.4, 2.1, 1358.4] 

PT4 [-17.5, -21.7, 1478.4] [-17.7, -19.2, 1480.2] [-19.6, -19.0, 1449,3] 
 
  

Table 3. Distances between the reconstructed points [mm] 

Distance Single thermal 
camera 

Thermal-visual 
set Visual-visual set 

PT1, PT2 183.8 179.2 177.4 

PT2, PT3 190.6 204.0 177.6 

PT3, PT4 198.2 189.5 177.5 

PT4, PT1 183.8 192.6 178.8 

 

Table 4. Comparison of the lengths of translation vectors of stereoscopic sets [mm]  

Single thermal 
camera 

Thermal-visual 
set Visual-visual set 

184.1 90.1 195.9 
 
Analysing the table 3 it can be concluded that the classical stereovision set gives the best reconstruction results 

– all distances  are almost equal end are slightly different from the real value – the difference is about 3mm. Such system 
requires however three cameras to operate in the infrared (two visual and one thermal) and the reconstruction based 
only on visual images is not always valid for the thermal scene. The reconstruction with a single thermal camera 
operating from two different viewpoints is less precise but its direct operation on thermal images makes it independent of 
the scene conditions. The worst accuracy of the thermal-visual set result from the smallest base (shortest distance 
between the cameras) comparing to the other two stereoscopic sets (table 4) and therefore this reconstruction technique 
should be used only for approximate 3D reconstruction for scaling purposes.  

6. Conclusions 

A system for 3D reconstruction of a thermal scene by means of a thermal-visual system of single cameras was 
presented. 3D scene is reconstructed by means of its feature points image coordinates delivered by the same thermal or 
visual camera observing the scene from two different viewpoints. The alternate use of visual and thermal cameras allows 
better recognition of feature points depending on the 3D scene conditions. The obtained results were compared with 
classical stereovision approach. The initial estimation of reconstruction error is up to 10%, while the important advantage 
of the proposed method is the use of only one thermal camera, which greatly reduces the cost of the system. 
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