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Abstract  

Since its introduction in 1999, the Thermographic Signal Reconstruction (TSR) method has become widely used for 
enhancement and analysis of sequence data.  While TSR image data is often sufficient for many applications, examination of 
the resulting logarithmic time derivatives of each pixel have facilitated significant insight into the details of the active 
thermography process.  The deterministic nature of the derivatives has facilitated the successful implementation of 
automated defect recognition, and perhaps more significantly, robust material characterization in a flaw-free sample.  We 
present a summary of these advances, and the relationships between the TSR derivatives and the thermophysical properties 
of a sample.  

 

1. Introduction 

When first conceived in 1999, the Thermographic Signal Reconstruction (TSR) method was intended to enhance 
the subjective quality of images acquired from active thermography sequences by reducing the amount of temporal noise in 
each pixel time history.  It went about this by fitting the logarithmic time evolution of each pixel with a low order polynomial 
function, and then transforming that function back to the linear domain.   The result was a temporally low-pass filtered replica 
of the original data from the IR camera that was almost entirely free of temporal noise.  Perhaps the most striking thing about 
this early test of TSR was that although it dramatically improved the temporal signal-to-noise characteristics of a given pixel, 
it had almost no effect on the feature-to-background content of the image.  The lesson learned was that removal of temporal 
noise from the camera data sequence did not necessarily provide any benefit for the practice of Nondestructive Evaluation 
(NDE).  Immediately following the initial (unsuccessful) attempt to improve IR NDE results using TSR, the researcher team 
recognized that the true benefit of the method was not in attempting to replicate the original data, but rather, to leave it in the 
logarithmic domain and view the derivatives of the logarithmic temperature-time evolution as images.  The result is the 
modern implementation of TSR, which has become a widely accepted NDE tool, and has been discussed and analyzed 
extensively in the literature.  It has become common practice to rely on the first and second TSR derivative images, and 
often, the original raw (or noise reduced) IR image is bypassed entirely.  The derivative images offer significantly greater 
feature to background contrast, and a constrained dynamic range in which the derivative amplitudes are prescribed.  Most 
importantly, they allow detection of deep or subtle features that may be undetectable in the original IR data sequence.  

 

2. TSR Derivative Characteristics  

While much attention has been devoted to the improvement of IR NDE images that TSR provides, there is a wealth 
of physical information that can be extracted from each pixel in a TSR data set.  Unlike other IR NDE techniques that are 
based on evaluation of an image, either visually or computationally, it is possible to extract a significant amount of information 
from a single pixel, without reference to adjacent pixels or a human interpreter.  The characteristics involved are invariant 
with respect to material or the specifics of the apparatus, and can be interpreted without a calibration standard or a priori 
knowledge of the target sample.  To illustrate, it is useful to consider a large, adiabatically isolated slab of thickness L that 
uniformly and instantaneously heated on its front surface.  Plotting the front surface logarithmic temperature-time response 
and its first and 2nd derivatives Fig. 1, we observe: 

a. Although the log plot depends on the absorbed input energy and thermal properties of the sample, its shape, and 
hence its derivatives, remain invariant, and bounded within specified ranges. 

b. As the thickness or the thermal diffusivity of the sample changes, the derivatives remain unchanged except for a 
shift left (thinner / higher diffusivity) or right (thicker / lower diffusivity).   

c. The peak of the 2nd derivative provides a precise indication of the time at which incident heat from the surface 
interacts with the back wall interface. 
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Figure 1(left to right)  Logarithmic temperature. 1
st
 and 2

nd
 derivative plotted against ln(time) for an adiabatic slab.  

The 2nd derivative for the adiabatic slab can be approximated to a high degree of accuracy with a Gaussian function.  In the 
event that heat passes through the back wall, e.g. a multilayer system, the 2nd derivative changes.  For an infinitely thick 
substrate layer has lower thermal conductivity than the first layer, the peak derivative amplitude decreases, and it is followed 
by a negative-going component.  In the case where the opposite conductivity conditions exist, the polarity of the 2nd derivative 
changes correspondingly.  In either case, the multilayer 2nd derivative is bipolar, while the adiabatic slab derivative is uniquely 
positive, and in both cases, the derivative asymptotically approaches zero.  However, in the case where the 2nd layer has an 
adiabatically isolated back wall, the 2nd derivative will make a sudden turn in the positive direction, regardless of the 
conductivity arrangement.  It is important to recognize that we have made several inferences about the configuration of the 
sample from cursory examination of the 2nd logarithmic time derivative of a single pixel: 

a. Adiabatic slab (positive Gaussian) 
b. Higher conductivity layer on thick substrate (positive peak followed by negative; 0 asymptote) 
c. Lower conductivity layer on thick substrate (negative peak followed by negative; 0 asymptote) 
d. Higher conductivity layer on substrate (positive peak followed by negative; positive asymptote) 
e. Lower conductivity layer on thick substrate (negative peak followed by negative; positive asymptote) 

 
Figure 2: Multilayer behaviour of the 2

nd
 TSR derivative 

We can make additional quantitative inferences by noting the time at which the 2nd derivative maxima and zero crossings 
occur.  It is also worth noting that we are discussing characterization of flaw-free samples, which would yield no signal 
whatsoever if contrast methods were employed.  We will discuss the implications of the presence of a flaw on derivative 
behaviour, and additional quantitative information that can be derived from the derivatives in the full paper. 
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