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Abstract -The inverse heat conduction in a multi-material slab with periodic temperature excitation is 
investigated. We derive a polynomial relation to estimate the frequency of the periodic excitation as a function 
of the temperature amplitude at a given observation point in the material specimen. The formula includes 
characteristic geometric and material parameters of the system. The polynomial formula can be an effective 
design tool for quick frequency predetermination in the design of non-destructive testing experiments with 
infrared thermography. The convergence and accuracy of the formula are assessed by comparison with 
analytical thermal quadrupoles solution. 

 

1. Introduction 

Infrared thermography is a non-destructive testing technique in the field of failure detection. Material, civil and 
aerospace engineering are some of the application areas of infrared thermography [1], [2], [3]. The inspection becomes 
more challenging for composite and multi-layer materials especially in the field of aerospace [4]. Any defect in multi-layer 
material or composite such as ply separation, air bubbles and delimitation can lead to the modification of their properties 
[5], which can affect reliability and safety. Detecting a characteristic of a possible defect in a shorter time and easier way 
are two notable benefit of infrared thermography [6]. This method can be applied in two different ways, namely active and 
passive thermography [7]. 

In active infrared therrmography, the specimen is excited by an external thermal heat source and a camera 
captures the images. The images are processed by computers and any lack of integrity on the surface or inside the 
structure is detected. Several parameters are involved in detection techniques to have clear and accurate results, such 
as material properties of tested objects and depth and size of the defect [8]. Active infrared thermography requires the 
experimental setup design. Effective experimental design requires the predetermination of the radial frequency of the 
boundary excitation that corresponds to certain temperature amplitude, since this parameter is correlated with the size 
and characteristics of the flaws [8]. 

A closed form solution of the inverse problem was derived in [9] for a semi-infinite domain. The applicability and 
limitation of this formula were assessed in [10]. Here we consider the inverse problem for a multi-layer heat conducting 
solid. We use the thermal quadrupoles representation to derive a lumped parameters formulation of the problem that 
allows for the input to output representation in terms of a transfer function in the Laplace domain. The generally 
transcendental transfer function is approximated with the corresponding power series, which allows for a polynomial 
implicit approximated solution of the inverse problem. Explicit approximate solutions are given up to third order 
truncation. 

The rest of the paper is organized as follows. In Section 2 we briefly recall the formulation of the initial-boundary 
values problem describing the heat conduction in a multi-layer slab with periodic temperature excitation. In Section 3 we 
introduce a lumped parameters representation of the problem by means of thermal quadrupoles [11]. In Section 4 we 
derive an implicit approximated formula that solves the inverse problem (determination of the frequency of excitation 
given the amplitude of the temperature at a given observation point) for design of experiments in nondestructive testing 
of bi-material slabs. The formula includes characteristic geometric and material parameters of the bi-material system. 
The accuracy of the formula with respect to analytical results of the direct problem, and convergence of the polynomial 
solution with increasing truncation order is established. Section 5 summarizes the results and contributions. 
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2. Heat conduction in a two-layer slab 

 
Fig. 1. Schematics of a two-layers slab with temperature radiation on one side and convection on the other side. 

Here 𝑇∞ is a uniform ambient temperature. 

We consider a multi-layer slab-like domain, see figure 1, which is a three dimensional continuum with two sides very 
large with respect to thickness so that the effect of the edges can be neglected. It is therefore appropriate to introduce a 
reduced one-dimensional approximation along the spatial coordinate 𝑥 ∈ [0, ℓ] of the initial boundary values problem 
governing the heat conduction. Moreover, we assume that the lateral surface has no heat loss and that there is no 
internal heat source, and formulate the one-dimensional initial-boundary values heat conduction problem as 

 𝜕𝑢𝑖
𝜕𝑡

= 𝛼𝑖
𝜕2𝑢𝑖
𝜕𝑥2

,   𝑖 = 1,2, … ,𝑛 

(1a) 

 𝑢𝑖(𝑥, 0) = 0 (1b) 

 
𝑢𝑖(𝑎𝑖 , 𝑡) = 𝑢𝑖+1(𝑎𝑖 , 𝑡),

𝑖 = 1,2, … ,𝑛 − 1 

(1c) 

 
𝑘𝑖
𝜕𝑢𝑖
𝜕𝑥

(𝑎𝑖 , 𝑡) = 𝑘𝑖+1
𝜕𝑢𝑖+1
𝜕𝑥

(𝑎𝑖 , 𝑡),
𝑖 = 1,2, … ,𝑛 − 1 

(1d) 

 𝑢1(0, 𝑡) = 𝑈 sin𝜔𝑡 (1e) 

 
𝑘𝑛
𝜕𝑢𝑛
𝜕𝑥

(ℓ, 𝑡) = −𝜇𝑢𝑛(ℓ, 𝑡) 
(1f) 

 
where 𝑢𝑖 is the temperature raise (with respect to the ambient temperature) in the i-th layer at point  (𝑥, 𝑡) ∈  ℝ × ℝ, 
𝑎1, 𝑎2, … , 𝑎𝑛−1 are the coordinates of the material interfaces in the slab that are assumed to be parallel to the sides at 
𝑥 = 0 and 𝑥 = ℓ, and constants 𝛼𝑖 and 𝑘𝑖 represent respectively the thermal diffusivity and the thermal conductivity of the 
materials. We consider 𝑎0 ≡ 0 and 𝑎𝑛 ≡ ℓ. The slab is assumed to be initially at the ambient temperature consistently 
with the initial condition (1b). At time zero a persistent oscillating perturbation of amplitude 𝑈 and radian frequency 𝜔 is 
added at 𝑥 = 0, as formalized by the boundary condition (1e). Equation (1f) is a convective boundary condition describing 
the experimental conditions that we want to reproduce. By introducing the non-dimensional variables 
 

𝑢𝑖∗ =
𝑢𝑖
𝑈 ,   𝑥∗ =

𝑥
ℓ ,   𝑡∗ = 𝜔𝑡 

 

we rewrite the initial-boundary values problem (1) in the non-dimensional form 
 

𝜕𝑢𝑖∗

𝜕𝑡∗ =
1
𝛽𝑖
𝜕2𝑢𝑖∗

𝜕𝑥∗2 

(2a) 

 
𝑢𝑖∗(𝑥∗, 0) = 0 

(2b) 

 
𝑢𝑖∗(𝑎𝑖∗, 𝑡∗) = 𝑢𝑖+1∗ (𝑎𝑖∗, 𝑡∗) 

(2c) 
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𝜚𝑖
𝜕𝑢𝑖∗

𝜕𝑥∗
(𝑎𝑖∗, 𝑡∗) = 𝜚𝑖+1

𝜕𝑢2∗

𝜕𝑥∗
(𝑎𝑖∗, 𝑡∗) 

(2d) 

 
𝑢1∗(0, 𝑡∗) = sin 𝑡∗ 

(2e) 

 
𝜕𝑢𝑛∗

𝜕𝑥∗
(1, 𝑡∗) + 𝜎𝑢𝑛∗ (1, 𝑡∗) = 0 

(2f) 

with the nondimensional groups defined by 

𝛽𝑖 =
𝜔ℓ2

𝛼𝑖
, 𝜚𝑖 =

𝑘𝑖
𝑘1

, 𝜎 =
𝜇ℓ
𝑘𝑛

 

 
Unless otherwise stated, in the remaining part of the paper we will drop the superscript star and refer to non-dimensional 
variables by using the same symbol as the corresponding dimensional ones. 

 

3. Lumped parameters representation by thermal quadrupoles 

A thermal quadrupole is a two ports lumped element that allow for the input to output representation of the heat 
flux (through) and the temperature (across) in a conducting body [10]. For the case of one-dimensional heat conduction 
the representation is obtained by taking the one-sided (with respect to time) Laplace transform of the system in equations 
(2). Therefore the initial-boundary values problem is mapped into a boundary values problem that depends on the 
Laplace variable s. The general solution of the transformed temperature is 

 𝑈𝑖(𝑠, 𝑥) = 𝑐𝑖1(𝑠) cosh�𝑥�𝛽𝑖𝑠� + 𝑐𝑖2(𝑠) sinh�𝑥�𝛽𝑖𝑠� 

where the constants 𝑐𝑖1 and 𝑐𝑖2 are determined by the boundary conditions. 
 

 
Fig. 2. Lumped parameters representation of the linear system (3) via thermal quadrupoles, with an observation 
point 𝑥 located within layer 1. The case with observation point located in layer 2 can be easily obtained. 

Given the linear constitutive relation between the heat flux and the temperature, it is possible to represent the one 
dimensional heat-conduction problem in terms of inputs and outputs of each layer, transformed by a suitable transition 
matrix whose entries are determined by the general solution above. For the system (2) the thermal quadruploles block 
diagram is given in figure 2, with transition matrices given by 
 

𝑀𝑖−1
𝑖 = �𝐴𝑖 𝐵𝑖

𝐶𝑖 𝐷𝑖
� , 𝑖 = 1,2, … ,𝑛 

(3a) 

 
𝐴𝑖 = 𝐷𝑖 = cosh �(𝑎𝑖 − 𝑎𝑖−1)�𝛿𝑖𝛽1𝑠� 

(3b) 

 
𝐵𝑖 =

1
𝜚𝑖�𝛿𝑖𝛽1𝑠

sinh �(𝑎𝑖 − 𝑎𝑖−1)�𝛿𝑖𝛽1𝑠� 
(3c) 

 𝐶𝑖 = 𝜚𝑖�𝛿𝑖𝛽1𝑠 sinh �(𝑎𝑖 − 𝑎𝑖−1)�𝛿𝑖𝛽1𝑠� 
(3d) 

where 𝑀𝑖−1
𝑖  is the transition matrix for the i-th layer that is used to represent the input to output behaviour of an 

homogeneous layer of thickness 𝑎𝑖 − 𝑎𝑖−1, and 

𝛿𝑖 =
𝛽𝑖
𝛽1

=
𝛼1
𝛼i

 

The transition matrices 𝑀𝑖−1
𝑥  and 𝑀𝑥

𝑖  are defined analogously by substituting 𝑎𝑖 and 𝑎𝑖−1 with 𝑥 respectively. The 
transition matrix 𝑀𝑛

∞ which accounts for the convective boundary condition is given by 
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𝑀𝑛
∞  = �1

1
𝜎

0 1
� 

The nondimensional lumped parameters representation in Eqs. (3) implies that the transfer function depends on the 
excitation frequency 𝜔 through  𝛽1. In other words, the parameter  𝛽1 is the nondimensional equivalent of 𝜔. 

We indicate with capital letters the Laplace transforms of fields introduced above. The input to output relation 
between the lumped variables 𝑈1 and 𝑈𝑥, that is the temperature at the observation point 𝑥 located in the i-th layer with 
respect to the input 𝑈1 is obtained by solving the following system associated to the thermal quadrupoles representation 
of the system 
 

�𝑈1Q1
� = 𝑀0

1𝑀1
2𝑀2

3 ⋯𝑀𝑖−1
𝑥 �𝑈𝑥Q𝑥

� (4a) 

 
�𝑈𝑥Q𝑥

� = 𝑀𝑥
𝑖𝑀𝑖

𝑖+1 ⋯𝑀𝑛−1
𝑛 𝑀𝑛

∞ �𝑈∞Q∞
� (4b) 

with 𝑈∞ = 0. From Eqs. (4b) we obtain 𝑈𝑥 and Q𝑥 in terms of Q∞, which allows to obtain the relation between Q𝑥 and 𝑈𝑥. 
Substitution into (4a) gives the relation between 𝑈1 and 𝑈𝑥. The solution is in general represented by the following input 
to output relation which accounts for the geometry and the material properties 

𝑈𝑥
𝑈1

=:𝐺(𝑠) 

 

4. Approximate solution of the inverse problem 

A closed form solution of the inverse problem, that is a closed form relation between 𝛽1 and 𝑈1 cannot be found. 
Here we approximate the transfer function 𝐺(𝑠) as the inverse of a power series expansion with respect to 𝛽1𝑠 and asses 
the accuracy of the approximation for different cases. Specifically, 𝐺(𝑠) is approximated by 
 

𝐺(𝑠)~𝐺𝑎(𝑠) =
1

∑ 𝑏𝑘(𝛽1𝑠)𝑘𝑁
𝑘=0

=:
1

𝑝𝑁(𝛽1𝑠) (5) 

where coefficients 𝑏𝑘 are given by 
 

𝑏𝑘 =
1
𝑘!

𝜕𝑘

(𝜕(𝛽1𝑠))𝑘 �
1

𝐺(𝑠)��𝛽1𝑠=0
 (6) 

The approximated input to output relationship 
𝑈𝑥
𝑈1

= 𝐺𝑎(𝑠) =
1

𝑝𝑁(𝛽1𝑠) 

 
allows to find an implicit solution of the inverse problem whenever the polynomial 𝑝𝑁(𝛽1𝑠) is stable, that is whenever the 
roots have negative real part.  

For a linear scalar system with transfer function 𝐺𝑎(𝑠) the response to the sinusoidal input 𝑢1(0, 𝑡) = sin𝜔𝑡 is 
given by 𝑢2(𝑥, 𝑡) = |𝐺𝑎(𝑗𝜔)| sin(𝜔𝑡 + 𝜑), see for example [12, Chapter 7], where |𝐺𝑎(𝑗𝜔)| and 𝜑 are respectively the 
amplitude and the phase of the transfer function 
 

|𝐺𝑎(𝑗𝜔)|2 = ℜ�𝐺𝑎(𝑗𝜔)�2 + ℑ�𝐺𝑎(𝑗𝜔)�2 
 

 
tan𝜑 =

ℑ(𝐺𝑎(𝑗𝜔))
ℜ(𝐺𝑎(𝑗𝜔)) 

 

where the operators ℜ and ℑ represent respectively the real and the imaginary part of their argument, and 𝑗 = √−1. 
Therefore the amplitude of the temperature 𝑢𝑥 at the observation point located at the non-dimensional abscissa 𝑥 can be 
related to the nondimensional excitation frequency 𝛽1 by 

 ℜ�𝑝𝑁(𝑗𝛽1)�2 + ℑ�𝑝𝑁(𝑗𝛽1)�2 =
1

|𝑢𝑥|2 (7) 

For 𝑁 = 2 and 𝑁 = 3 the explicit forms of Eq. (7) are respectively given by 
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𝑏02 −
1

|𝑢𝑥|2 + (𝑏12 − 2𝑏0𝑏2)𝛽12 + 𝑏22𝛽14 = 0 (8) 

 
𝑏02 −

1
|𝑢𝑥|2 + (𝑏12 − 2𝑏0𝑏2)𝛽12 + (𝑏22 − 2𝑏1𝑏3)𝛽14 + 𝑏32𝛽26 = 0 

(9) 

The bi-quadratic structure of the expressions allows for the explicit solution to be found by using the formula for the roots 
of quadratic and cubic polynomials. Among the multiple roots, one must select the one such that 𝛽1 is real and non-
negative. We note that the implicit solution in (7) applies to multilayer systems provided that coefficients 𝑏𝑘 are obtained 
for the specific materials and geometry. For a generic order 𝑁 the implicit polynomial relation can be written as 
 

𝑏02 + 𝑏𝑁2𝛽12𝑁 + ��𝑏𝑘2 − 2𝑏𝑘−1𝑏𝑘+1�𝛽1
2𝑗 −

1
|𝑢𝑥|2 = 0

𝑁−1

𝑘=1

 (10) 

The solution for 𝑁 = 2 is 

 𝛽12 =
2𝑏0𝑏2 − 𝑏12 ± 1

|𝑢𝑥|�|𝑢𝑥|2𝑏12(𝑏12 − 2𝑏0𝑏2) + 4𝑏22

2𝑏22
 (11) 

In order to have 𝛽12 > 0 for |𝑢𝑥| → 0 (𝛽1 would otherwise be complex, and so would be the frequency of excitation 𝜔) we 
must select the solution 
 

𝛽12 =
2𝑏0𝑏2 − 𝑏12 + 1

|𝑢𝑥|�|𝑢𝑥|2𝑏12(𝑏12 − 2𝑏0𝑏2) + 4𝑏22

2𝑏22
 (12) 

which gives 
 

𝛽1 = �
2𝑏0𝑏2 − 𝑏12 + 1

|𝑢𝑥|�|𝑢𝑥|2𝑏12(𝑏12 − 2𝑏0𝑏2) + 4𝑏22

2𝑏22
 (13) 

The approximate solution in Eq. (13) holds provided that the argument of the radical is positive. For 𝑁 = 1 we obtain the 
very simple formula 
 

𝛽1 =
1
𝑏1
�

1
|𝑢𝑥|2 − 𝑏02 (14) 

In the following sections we give expressions for coefficients 𝑏𝑘 corresponding to different scenarios. 
Coefficients are obtained with Mathematica©. 

4.1. Homogeneous slab 

A homogeneous slab is characterized by 𝑛 = 1 with the observation point 𝑥 placed in the single layer. The first 
three coefficients that define the approximate transfer function 𝐺𝑎 (for 𝑁 = 2, that is second order truncation) are 
 

𝑏0 =
1 +  𝜎

1 + 𝜎(1 − 𝑥) (14a) 

 
𝑏1 =

𝑥
6(1 + 𝜎(1 − 𝑥))2 (𝜎 (𝜎 + 1)𝑥2 − 3 (𝜎 + 1)2 𝑥 + 2 (𝜎 (𝜎 + 3) + 3)) (14a) 

 
𝑏2 =

𝑥
360(1 + 𝜎(1 − 𝑥))3 (7𝜎2 (𝜎 +  1)𝑥5 −  42𝜎 (𝜎 +  1)2 𝑥4 + 5 (19 𝜎 (𝜎 (𝜎 + 3) + 3) + 15)𝑥3

− 100 (𝜎 + 1)(𝜎 (𝜎 + 3) + 3)𝑥2 + 24 (2𝜎 (𝜎 (𝜎 + 5) + 10) + 15)𝑥 − 8 (𝜎 (𝜎 (𝜎 + 6) + 15)
+ 15)) 

(14c) 

For 𝑥 = 1 and 𝜎 = 0.08 the plots of 𝛽1 versus |𝐺𝑎(𝑗𝛽1)| = |𝑢𝑥| 𝑈⁄  are shown in figures 3 for 𝑁 = 1 (Eq. (14)) and 𝑁 = 2 
(Eq. (13)) respectively. The approximate solutions (dashed line and dashed-dotted lines) are compared with the exact 
solution (continuous line). The non-dimensional parameter 𝜎 is obtained by considering a slab of unit length with 
𝑘1 = 49.8 W (m K)⁄  (carbon steel) and 𝜇 = 20 W (m2 K)⁄  (air). 
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Fig. 3: Plots of 𝛽1 versus |𝑈𝑥(𝑗𝛽1)| from the analytical quadrupole solution (solid line), and the approximated 
polynomial solution with 𝑁 = 1 (dashed line) and 𝑁 = 2 (dot-dash line) for an homogeneous slab. 

The relative percentage error 100|1 − 𝛽1𝑎/𝛽1| is plotted in Fig. 4 for two values of 𝑁 (Eqs (13) and (14)) and the 
same values of the non-dimensional parameter 𝜎 and 𝑥. For low amplitudes 𝑈𝑥 the first order polynomial approximation 
gives lower errors than the second order polynomial approximation, whereas for the normalized amplitude approaching 1 
the relative error of the second order approximation is considerably lower and monotonically decreases consistently with 
the plot in figure 3. 
 

 
Fig. 4: Plots of the relative percentage error 100|1 − 𝛽1𝑎/𝛽1|  versus 𝛽1 for 𝑁 = 1 (solid line) and 𝑁 = 2 (dashed 

line). 

4.2. Two layer slab 

We consider a two-layer slab (𝑛 = 2) with the observation point 𝑥 at the interface mimicking a test to detect 
detachments between layers in a composite panel, see figure 1. The first three coefficients that define the approximate 
transfer function 𝐺𝑎 (for 𝑁 = 2) are 
 

𝑏0 = 1 +
𝜚2𝜎𝑎1

𝜚2 + 𝜎(1 − 𝑎1) (15a) 

 
𝑏1 =

𝑎1
6�𝜚2 + 𝜎(1 − 𝑎1)�2

(𝜎2(3 − 𝜚2 − 2𝜚2𝛿2)𝑎13 + 𝜎(𝜎 + 𝜚2)(6 − 𝜚2 − 6 𝜚2𝛿2)𝑎12

+ 3(𝜎 + 𝜚2)2(1 − 2 𝜚2𝛿2)𝑎1 + 2 𝜚2𝛿2(3𝜚22 + 3𝜚2𝜎 + 𝜎2)) 
(15b) 
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 𝑏2 =
𝑎1

360�𝜚2 + 𝜎(1 − 𝑎1)�3
�𝜎3 ��𝜚2(3 +  4 (5 −  2 𝛿2)𝛿2)� − 15 � 𝑎16

+ 𝜎2(𝜚2 + 𝜎)�(16 𝛿2 (3 𝛿2 − 5) − 6)𝜚2 + 45�𝑎15

− 3𝜎(𝜎 + 𝜚2)2�(40 (𝛿2 − 1)𝛿2 − 1)𝜚2 + 15�𝑎14

+ 5 �12𝜚24 𝛿2(2 𝛿2 − 1) + 𝜚23(48𝛿2 (2𝛿2 − 1)𝛿2 + 3) + 3𝜚22𝜎(16𝛿2 (2 𝛿2 − 1)𝜎 + 3)� 𝑎13

− 20𝛿2𝜚2(𝜚2 + 𝜎)(6𝛿2 − 1)(3𝜚22 + 3 𝜚2𝜎 + 𝜎2)𝑎12

+ 24𝛿22𝜚2(15𝜚23 + 20𝜚22𝜎 + 10𝜚2𝜎2 + 2𝜎3)𝑎1 − 8𝛿22𝜚2(15𝜚23 + 15𝜚22𝜎 + 6𝜚2𝜎2 + 𝜎3)� 

(15c) 

The plot in figure 5 shows the first order (dashed line) and second order (dot-dash line) approximate solutions versus the 
analytical quadrupoles solution (continuous line). Values of non-dimensional parameters used to compute the 
coefficients in Eqs. (15) are 
 

𝑎1 = 0.5, 𝜚2 = 5.02, 𝛿2 = 0.133,
𝜎 = 0.08, 𝑥 = 𝑎1 

(16) 

The set of parameters has been obtained by considering material 1 and material 2 to be, respectively, carbon steel and 
aluminum. 

 
Fig. 5: Plots of 𝛽1 versus |𝑈𝑥(𝑗𝛽1)| from the analytical quadrupole solution (solid line), and the approximated 

polynomial solution with 𝑁 = 1 (dashed line) and 𝑁 = 2 (dot-dash line) for a two layer slab. 

The relative percentage error 100|1 − 𝛽1𝑎/𝛽1| is plotted in Fig. 6 for two values of 𝑁 (Eqs (13) and (14)) and the same 
values of the non-dimensional parameters. For low amplitudes 𝑈𝑥 the first order polynomial approximation gives lower 
errors than the second order polynomial approximation, whereas for the normalized amplitude approaching 1 the relative 
error of the second order approximation is lower. The simple first order approximation in Eq. (14) allows in this case to 
estimate the non-dimensional excitation frequency 𝛽1 within a maximum error of about 10%. 

 
Fig. 6: Plots of the relative percentage error 100|1 − 𝛽1𝑎/𝛽1|  versus 𝛽1 for 𝑁 = 1 (solid line) and 𝑁 = 2 (dashed 

line) (Two layer slab). 

4.1.1. Dimensional example 

We consider a two layer slab with the same parameters as above. To estimate the frequency of excitation 𝜔 we 
use the first order approximation in Eq. (14). From the definition of 𝛽1 we obtain the dimensional formula 
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𝜔 =
𝛼1𝛽1
ℓ2 =

𝛼1
ℓ2𝑏1

�
1

|𝑢𝑥|2 − 𝑏02 (17) 

For a carbon steel we have 𝛼1 = 1.34 × 10−5m2s−1 Moreover for the non-dimensional parameters in Eq. (16) (obtained 
by considering carbon steel and aluminum as materials for the two layer slab) we have the following expressions for 𝑏0 
and 𝑏1 in terms of 𝑥 ∈ [0,1] 
 

𝑏0 =
5.26

5.1 − 0.08𝑥 (17a) 

 
𝑏1 =

6.23 + 3.42 𝑥 − 1.79𝑥2 + 0.00936𝑥3

(5.1 − 0.08𝑥)2  (17b) 

For 𝑥 = 𝑎1 = 0.5 and ℓ = 1m the plot of 𝜔 versus |𝑢𝑥| 𝑈⁄  (Eq. (17)) is given in Fig. 7. 

 
Fig. 7: For a two layer slab comprised of carbon steel and aluminum, plot of the frequency of excitation 𝜔 

versus |𝑢𝑥| 𝑈⁄  . 

5. Summary 

We derived a polynomial implicit solution of the inverse heat conduction problem in a multi-layer slab. The 
solution is based on a lumped parameters representation of the initial-boundary values heat conduction problem by 
means of thermal quadrupole method. By consider the temperature at the excited boundary and in one point along the 
thickness as input and output, we considered the Taylor series approximation of the transcendental quadrupoles transfer 
function for the implicit polynomial representation of the inverse problem. A simple approximated formula based on first 
order truncation is given and the error with respect to the analytical solution is computed for homogeneous and bi-
material slab. The first order approximation can be an effective design tool for infrared non-destructive testing when the 
solution of the inverse problem is required. 
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