
  
  
  

Information condensation in defect detection using TSR coefficients images 

by  J.-M. Roche*, F.-H. Leroy*, D.L. Balageas** 

* ONERA, Composite Materials and Structures Dept., BP 72, 92322 Châtillon cedex 
** Institute of Mechanics and Engineering of Bordeaux I2M, TREFLE Dept., 33305 Talence cedex, France 
 

Abstract 

The Thermographic Signal Reconstruction (TSR) technique, based on the logarithmic polynomial fitting of the 
temperature time-evolution, improves the efficiency of pulse-stimulated thermography. However, the non-destructive 
evaluation of the inspected structure requires the analysis of the full temperature-time sequence. This drawback impacts 
all transient thermal NDE method whatsoever. A new post-processing development of the TSR data, based on the use of 
the very limited number of polynomial coefficients, avoids this time-consuming task by producing a unique composite 
image of the defects, containing information on their depths. This image results from an RGB-basis projection of three of 
the most pertinent coefficient images. 

The performance of the method is compared with that of the classic TSR method, in the case of a carbon/epoxy 
coupon containing artificial defects simulating delaminations. Comparisons are also made with three other well-known 
data processing techniques: Pulse Phase Thermography (PPT), Principal Component Thermography (PCT) and High-
Order Statistics (HOS). In each case, the relevance of the new approach is proven: not only is it simple and rapid, but it 
also guarantees a defect detectivity at least as good as the one provided by the other techniques. Moreover, the RGB 
projection, successfully applied to all four methods (TSR, PPT, PCT and HOS), is shown to be an efficient operation to 
compress and synthesize the thermal data which was, so far, scattered in several images. It may be considered as a 
general post-processing technique useful for any such method currently used in NDE. 

 

1. Introduction 

If flash thermography is clearly the most sophisticated and versatile thermal non destructive evaluation (NDE) 
technique [1], this is certainly due to four decades of continuous research aiming at improving the detectivity and enhanc-
ing the accuracy of the characterization of defects [2]. The Thermographic Signal Reconstruction (TSR) technique [3-5] is 
the most recent improvement aiming at raising thermal NDE to the level of the most established NDE tools (ultrasonics, 
X-rays, liquid penetrant, magnetic particles and eddy currents). Although potentially allowing both qualitative and quanti-
tative diagnoses, the technique is mainly remarkable for its performance in detection of defects, thanks to the use of log-
arithmic derivatives images which provide defect patterns of excellent quality. Nevertheless, the inspection of large se-
quences of thermographic images and experience in heat transfer are required to optimize the choice of the observation 
times for an optimal detection. To avoid these major drawbacks, data compression and data processing automation are 
essential. Studies have been carried out in this direction by using skewness and kurtosis [6,7]. 

In this article, a new TSR-based technique is proposed, to simplify the process of detecting defects and to ob-
tain even better images. It is based on the use of the sole images of the coefficients of the logarithmic polynomials. The 
idea to considerer the TSR coefficients images is not totally new: it was tested by Vavilov [8] and Grinzato [9], while the 
TSR technique was spreading in the NDE community. A brief comparison of this type of images to Principal Component 
Thermography (PCT) and phasegrams from Pulse Phase Thermography (PPT) was also made by Umar et al. [10]. More 
recently, a study was carried out by Dumoulin et al. [11], using logarithmic polynomials to produce images of defects 
embedded in asphalt pavement samples submitted to a long square-shaped heat flux. 

Once the principle of the TSR processing technique is recalled (Section 2), the new approach is introduced 
(Section 3) and applied to the inspection of a carbon/epoxy coupon (Section 4). The optimization of the degree of the 
fitting polynomial is carefully examined and a strategy to produce a unique composite color image is proposed and im-
plemented. The obtained results are then compared with the ones of the classic TSR technique (Section 5), and the ones 
from PCT, PPT and High-Order Statistics (HOS) techniques (Section 6). 

2. Classic TSR technique 

The TSR method applied to pulsed thermographic experiments, for NDE purposes, consists in: 
- the fitting of the experimental log-log plot thermogram (here, the word “thermogram” will refer to a “pixel temperature 

time-history”, although in literature it can refer to a “thermal image”) by a logarithmic polynomial of degree n: 

    



ln(T)  a0 a1 ln(t ) a2 [ln(t )]2 ...an [ln(t )]n   (1) 
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with ΔT the temperature increase as a function of time t  (thermogram) for each pixel (i,j). This fitting is very useful for 
data storage since it enables to replace the full sequence of temperature rise images, ΔT(i,j,t) by the series of (n+1) im-
ages of the polynomial coefficients: a0(i,j), … an(i,j) (Figure 1). From this series of (n+1) images, it is possible to rebuild a 
full thermographic sequence.  

- the computation of the 1st and 2nd logarithmic derivatives of the thermograms, the derivation being achieved direct-
ly on the polynomial, therefore with a limited increase of the temporal noise. 

 

 
 

Fig 1. Defect detection by the TSR method: “classic” use and present approach. 

The sequences of images of the derivatives can be either qualitatively observed to detect the defects (Fig. 1), or 
quantitatively used to evaluate the depth of a defect, from characteristic times such as the half-rise time of the first derivative 
or the time of the maximum of the second derivative. This quantitative data analysis is out of the scope of the present work. 

3. A simple TSR-based technique for a rapid and efficient detection of defects 

The application of the TSR post-processing technique, as it is described in the previous section, requires the 
calculation of (n+1) logarithmic polynomial coefficients for every pixel, which implies the generation of (n+1) images giv-

ing the distribution of these coefficients. So far, these images have been almost exclusively considered as an intermedi-
ate step in the TSR process, and not fully exploited for direct detection of defects. 

However, such images contain information on the internal structure, which might be sufficient to detect all em-
bedded defects. This would be very convenient, since it would drastically reduce the data amount to consider, from the 

full sequence of temperature rise images T (i,j,t) to a small series of (n+1) images of polynomial coefficients a0(i,j), 
a1(i,j), …, an(i,j). The calculation of the images of logarithmic derivative distributions and the time-consuming process of 

selection of the most adequate images (one for each depth) could be avoided, as long as the purpose is pure detection, 
to a qualitative level only. 

In the following sections, the interest of this new approach is illustrated for the detection of artificial defects of 
various sizes and depths, in a carbon/epoxy composite plate. An empirical description of the polynomial coefficients im-
ages is done and an optimization of the method for a practical use is made. Answers are brought to questions which im-
mediately arise: how the information on defects is distributed among the various coefficient images? What is the optimal 
polynomial degree to obtain the better defect images? Is it possible to compress all information in a unique composite 
image? Are these images of better quality than those resulting from the distributions of the first and second derivatives? 
How can they be compared to other known techniques such as PCT, PPT and HOS? 

4. Application to a structure with defects of well defined location depths 

The tested coupon is a 270 mm × 200 mm × 5.25 mm carbon/epoxy composite plate, which has already been 
used for various studies in the past [12,13]. Its thermal diffusivity was preliminary measured by a classic flash diffusivity 
experiment and found equal to (4.2 ± 0.2) 10-7 m2s-1. The coupon contains 80 μm-thick Teflon® inserts of various sizes, 
embedded at different depths during the fabrication process of the composite, so that the influence of the defect depth 
and size can be analyzed. Furthermore, two zones contain two stacked up inserts of different sizes at different depths. 
The characteristics of the defects (shapes, dimensions, depth locations) are given in Fig. 2. They result from information 
given by the constructor and from ultrasonic measurements. The coupon is coated by a black, thin, carbon layer on both 
faces. The defects are numbered by two figures, the first one indicating their sizes, the second one their depths. 
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The tests were carried out at the Composite Materials and Structures Dept. of ONERA, using two Elinchrom 
flash lamps delivering a pulse of total energy 6 kJ in 4 ms. The temperature images (320 x 256 pixels) were recorded 
during 60 s at 200 Hz, with an integration time of 230 μs, by a CEDIP Jade LWIR camera. A Plexiglas® filter was put be-
tween the sources and the coupon to mitigate the spurious infrared radiations emitted by the hot flash lamps after the 
pulse. The inevitable non-uniformity of the heat deposition on the coupon was corrected by normalization. 

 

 

Fig. 2. Tested carbon/epoxy coupon: distribution of the artificial defects established from constructor information 
and ultrasonic measurements. 

Fig. 3 presents the time evolution of the surface temperature increase of the coupon after the pulse deposition 
(t=0) in the center of defect #1-1 and that of the sound zone (mean of eight points). The temperature increases have 
been normalized by those of an early time for which thermograms are not influenced by the shallowest defects. The 
slope of the sound zone thermogram is very close to -1/2. The noise of the thermograms becomes important after 20 s, 
and for deeper defects, not presented in this figure for sake of readability, the contrast between defective and sound 
zones might be merged in the noise, making the fitting by logarithmic polynomials a necessity. 

 

Fig. 3. Time evolutions of normalized temperature increases for sound zone and defect #1-1, after the 4 ms pulse. 

4.1. Constitution of the coefficient images 

The coefficient images are presented with a grey scale obtained by giving the black colour to the pixels having 
the lowest coefficient algebraic value and the white colour to the pixels having the highest coefficient algebraic value. 
The sound regions have a grey level resulting from the linear interpolation between minimum and maximum coefficient 
values. To avoid any distortion of this scale, a post-processing routine replaces the dead or abnormal isolated pixels by 
the median of their neighbors. 

4.2. Choice of an optimal polynomial degree 

To be relevant, the method must lead to images containing the highest possible number of defects present in 
the coupon. The optimization of the method requires a fine understanding of the combined influence of the two following 
parameters: the polynomial degree and the coefficient rank. Therefore, it is necessary to make a detailed analysis of the 
coefficient images generated by the logarithmic polynomial fitting. 
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For the present experiment, the fitting by logarithmic polynomials has been done for degrees n varying from 3 to 
11. For each degree, the images corresponding to the coefficients of ranks 0 to n are given in Fig. 4. Each coefficient 

image is identified by a label, the sign of which being negative if the grey scale is inverted, to make the images more 
comparable to each other, constituted of two numbers corresponding to the coefficient rank and the polynomial degree. 
For instance, the image labelled “–4/8” is the (x,y)-distribution of the coefficient a4 of the polynomial of degree 8, repre-
sented with an inverted grey scale; the label “5/8” corresponds to the coefficient a5 of the same polynomial, with the 
normal grey scale. 

 

 
 

Fig. 4. Pulse-heating coefficient images for polynomial degrees from 3 to 11. Influence of the polynomial degree and of 

the coefficient rank. Selection of an optimal polynomial degree (here n=7). 

A few general qualitative trends can be drawn from the comparisons of the images presented in Fig. 4: 

i) To make the images more similar, for any polynomial degree, it is necessary to invert the grey scale one time over 
two, separately considering the odd and even ranks, and attributing opposite signs to the first two ranks (0 and 1). This 
ultimately leads to the following series of images: -0/n, 1/n, 2/n, -3/n, -4/n, 5/n, and so on. 

ii)  Odd rank images are always sharper than even rank images, whatever the polynomial degree, and most of the 
time, more defects can be detected in the odd rank coefficient images than in the previous and following even rank coef-
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ficient images. This might be due to the odd symmetry of the logarithmic thermograms of the defective zones. Neverthe-
less, more experience is needed to determine whether this trend is caused by the present type of defects or is more 
general. 

iii) A constant influence of the defect depth on the image sharpness is noted: the deeper the defect, the less sharp 
the image. The shape of the deepest defects may even become evanescent. 

iv) The sign of the contrast generated by the defect may change, possibly several times, with increasing depths. 

v) Defects located at the same depth always present the same grey level, at least for degrees inferior to 9. For poly-
nomial degrees higher than 8, the texture of extended defects may become complex. 

vi) The number of detected defects tends to increase with the coefficient rank. However, this trend is a bit erratic. 

vii) The noise increases with the polynomial degree.  

viii)  The first two coefficient images (a0 and a1) reveal the first two surface plies (-45° and +45°); for higher ranks, the 
other plies (90° and 0°) are also visible, but mixed, and with an increasing noise. These images can be used just like 
tomographic cross-sections, with a space resolution which, obviously, decreases with the investigated depths. 

In order to select the optimal degree, as for defect detections, the number of visible defects in each image has 
been evaluated by visual examination. Defects #3-2, 3-2** and 3-3 can be considered as non-detectable in the present 
experimental conditions, because of the combined 3D conduction effects (side over depth ratios between 2.3 and 1.15), 
their near-resolution characteristic size (side inferior to 4 pixels), and their limited equivalent finite resistances. The maxi-
mum number of detectable defects can then be set equal to 10 (defects #1-1, 2-1, 3-1, 1-2, 2-2, 1/2-2*, 1-3, 2-3, 1-4*, and 1-
4**), so that the quality of the images and the efficiency of the method are evaluated by comparing the number of defects 
detected with the naked-eye to 10. The results are displayed in Figure 4: the bold figure at the bottom of each column 
represents the number of detected defects considering the full series of coefficient images for a given polynomial. It ap-
pears that for all explored values of n, all detectable defects are visible in such a series of images. 

The second evaluation indicator for this method is to find a coefficient image containing all detectable defects, 
for the lowest polynomial degree. Image -4/5 could be selected, but defects #1-2, 2-3 and 1-4** are hardly visible, so that 
it seems more sensible to pick degree 7 or 8. For these two degrees, there are respectively two and three images reveal-
ing the full collection of detectable defects. Among these five complete images, image -7/7 can be considered as the best 
quality image. Complete defect images are also found for n = 10 and 11, but are definitely noisier. 

Based on these considerations, degree 7 can be selected as the optimal degree for defect detection in this test-
ed coupon. 

4.3. Production of a unique synthetic image of the defects 

To make our approach even more convenient and efficient, the final step would be to set an automatic proce-
dure producing one synthetic image (from the series of coefficient images), in which all detectable defects would be visi-

ble. The ultimate level of data compression would be reached, since no user intervention in the image selection process 
would be needed.  

At this point, it is worth noticing that the five complete images (5/7,-7/7,-3/8, 5/8 and -7/8) are all odd rank imag-
es. It can be inferred that the sole odd images can be used to build the wanted synthetic image. The other advantage of 
not choosing the even images is an increase of the sharpness of the final image. In this case, considering degree n = 7, 

the summing of images 1/7, -3/7, 5/7 and -7/7 gives a satisfactory result, but defect #2-3 is hardly visible in the synthetic 
image (Fig. 5a). To have a proper detection of this defect, the summing of even images (-0/7, 2/7, -4/7, 6/7) is much bet-
ter, but defect #1-4** is totally missing (Fig. 5b). Since the final result is not as convincing as expected, another proce-
dure should be set up. 

 

 

Fig. 5. (a) Synthetic image of the defects obtained by summing all odd coefficients of the polynomial of degree 7 (images 
1/7, -3/7, 5/7,-7/7);  (b) ditto considering the even coefficients (images -0/7, 2/7, -4/7, 6/7); (c) ditto considering the three 

highest rank coefficient images (images 5/7, 6/7,-7/7). 

It is also noticeable that all detectable defects can be seen when considering the three highest order images, no 
matter the polynomial degree. In particular, for degree 7, all ten defects are neatly detected in the trio (5/7, 6/7, -7/7). 
Nevertheless, summing the three images leads to an unsatisfying result (Fig. 5c) because defect #2-3 generates con-
trasts with opposite signs in odd and even images. Therefore, the solution proposed in this article consists in projecting 
these three images in an RGB basis. The resulting composite image, displayed in Fig. 6a, makes all ten defects appear, 
with no possible doubt for an operator, which was the whole point of the present study. 
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Fig. 6. Synthetic composite image obtained by the projection of a trio of coefficient images in an RGB basis and influ-
ence of the choice of the coefficient images on the color of the defects: (a) trio: 5/7, 6/7,-7/7;(b) trio: -4/7, 6/7,-7/7. Cau-

tion: if reproduced in grey tones, this color image will not be meaningful. 

Assuming that all the defects have the same severity, which is realistic here since they are artificial and identi-
cally made, it can be noted that a bi-univocal relation exists between color and defect depth. Moreover, for one given 
depth, various shades are observed: for instance, defect #1-2 appears in bright yellow, while defect #2-2, for which 3D 
conduction effects are not negligible given its small dimensions, appears in orange; as for defect #1/2-2*, a gradient of 
color from the top to the bottom is seen, due to the influence of defect #1-4* which is partially underneath it. This is defi-
nitely an additional valuable piece of information given by the composite image, even though the color scale has no ab-
solute value. The color range indeed depends on the images chosen the build the composite one, as it is checked in Fig. 
6b, which displays a similar RGB projection, for the {-4/7, 5/7, -7/7} trio. 

This depth/color dependency should be studied more thoroughly, since it could give even more credit to the 
present technique. However, experimental data with real defects (such as delaminations) is needed: this will be the ob-
ject of future works already initiated in ONERA. 

5. Comparison of the present method to the classic TSR method  

5.1. Optimization of the polynomial degree and estimate of the logarithmic derivatives 

The choice of the optimal polynomial degree in the previous section was exclusively based on the coefficient 
images quality. The classic TSR technique is centered on the analysis of the first and second logarithmic derivatives of 
the thermograms. For this purpose, it is necessary to obtain the most precise fitting of the thermograms. Therefore, the 
choice of the optimal polynomial might not be the same: in the present case, it has indeed been found that the optimum 
fit was obtained for a higher polynomial degree: n=11, a degree which is higher than what is usually found in literature. 

These results on optimal degrees (7 or 8 for defect imaging and detection; 11 for time analysis of logarithmic de-
rivatives) are coherent with the numerical simulations and experiments mentioned in [11] where the TSR technique is 
applied to squared-shaped heating thermographic tests, exploiting the relaxation phase of the thermograms. The degree 
5 is used to produce TSR coefficient images and degrees 9 and 10 for pulse-phase analysis. When using the whole 
square heating sequence, the best fit required to reach degrees as high as 13 or 14. 

5.2. Optimization of the observation time for defect detection in the derivative images 

The optimization of the defect detection using the logarithmic derivatives consists in selecting the observation 
times which give the best SNR and sharpness compromise. This requires an analysis of the full sequences of the deriva-
tive images (see Fig. 1). Fig. 7 illustrates this issue by presenting the time evolution of the first and second logarithmic 
derivatives at the center of the largest defects located at the four depth levels and in the sound area. The choice of the 
optimal observation times for each depth is made by looking for the maximal contrasts between the defective zone 
curves and the sound zone ones.  

        
 

Fig. 7. Logarithmic derivatives of the sound zone (mean over 8 locations) and at the centers of the defects of maximum 
size (20×20 mm): first (on the left) and second derivative (on the right). Polynomial of degree: 11. 
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Fig. 8. “Best” images obtained by the application of the TSR and TSR-based techniques. Influence of the IR camera. 
First row: Present experiment with a Cedip Jade camera. (a) best thermal image at time 7.5 s; (b). Classic TSR method: 
First logarithmic derivative (polynomial of degree 11) at time 3.5 s; (c) ditto, second logarithmic derivative (polynomial of 
degree 11) at time 2.3 s; (d) Present TSR-based method: best coefficient image (polynomial of degree 7, image coeffi-

cient of rank 7); (e) RGB projections of the monomials 5/7, 6/7 and -7/7. 
Second row: Present experiment with a FLIR X6540sc camera (images taken from [20]). (f) Thermal image at 10 s; (g) 
First logarithmic derivative (polynomial of degree 7) at time7.5 s; (h) ditto, second logarithmic derivative at time 2.5 s; (i) 
Present TSR-based method: best coefficient image (polynomial of degree 7, image coefficient of rank 5); (j) RGB projec-
tions of the monomials 2/7, -3/7, and 5/7. 

 
The images providing a maximum number of visible defects, are obtained at time 3.5 s for the first logarithmic 

derivative (Fig. 8b) and at time 2.3 s for the second logarithmic derivative (Fig. 8c). They are compared to the best 
crude image (Fig. 8a), which is given as a reference and a demonstration of the necessity of data processing for 
thermographic NDE applications, and to the best coefficient image (Fig. 8d), that is to say the -7/7 one, chosen as 
explained in the previous sections. Finally, the composite image presented in Figure 6 is given for comparison in Fig-
ure 8e. But even without this composite image, the best image, based on defect detectability, is still  given by the pre-
sent approach. 

6. Influence of the camera performance 

The camera used for the aforementioned experiments was a ten-year-old CEDIP Jade LWIR camera (320 x 
256 pixels) with a non-negligible number of defective pixels (dead or erratic). In order to study the sensitivity of the 
present method to the noise of the recorded images, the present experiment results are compared to the ones ob-
tained with a more recent camera, the FLIR X6540sc camera (640 x 512 pixels) [20]. The matching images are given 
in Figure 8 (f-j).  

The new set of images presents some advantages, in particular: 
i) the background (non defective areas) is more uniform (which may be attributed to a less noisy normalisation opera-
tion thanks to the camera performance); 
ii) thanks to the higher number of pixels of the recent camera, the space resolution is better, which gives more con-
trasted defect contours and enables to detect more defects, in particular defects #3-2 and #3-2** which are not seen 
in the first set of images (first line). 
Considering the number of clearly detected defects, the image 8h is certainly the best one, nevertheless, the pattern 
of the defect images becomes complex for the shallowest defects, which may make the detection of irregularly-
shaped defects and of superposed defects more difficult. 

It can be concluded that there is a slight influence of the noise of the cameras on the quality of the images 
and that the higher number of pixels of the second camera definitely improves the space resolution of all processed 
images, allowing to detect the less extended defects. 

http://dx.doi.org/10.21611/qirt.2014.002



  
  
  

7. Comparison to other data processing techniques  

The exact same experimental data have been processed using well-known methods currently used in thermo-
graphic NDE: PCT [14,15], PPT [16,17], and HOS [7].    

The first set of approaches (PPT, PCT) proposes alternate bases for projection. While the TSR method projects 
onto a logarithmic polynomial basis, PPT relies on the Fourier basis (discrete Fourier transform) – so, the PPT technique 
used here is a significant extension of the well-known technique in which phase images are calculated for various fre-
quencies in relation with the supposed defect depths –, and PCT defines an optimal empirical projection basis obtained 
by analysis of the signals (Singular Value Decomposition). For PPT the most valuable information is contained within the 
five phase images related to the lower frequencies. Similarly, for PCT the first five components related to lower eigenval-
ues are potentially meaningful. It is worth mentioning that, as underlined by Marinetti et al. [15], PCT can be performed 

on frames (space components) or thermograms (time components); in our case, results turned out to be slightly better 
with time components. The HOS approach is also based on the analysis of time profiles but no projection basis is re-
quired. Profiles are analyzed through their statistical behaviour. Each thermogram is characterized by the central mo-
ments of the distribution of recorded temperatures. Subsurface defects are potentially detected by contrasts in moments 
up to order 5. The mean, variance, skewness and kurtosis correspond to the first, second, third and fourth moments, 
respectively. 

The same approach (RGB projection of the three selected images) is applied to the three methods (PCT, PPT 
and HOS), and compared to the results obtained with the present TSR-based approach (Fig. 9). The first observation  
that can be made is that the procedure is not very conclusive for the HOS technique: the mean grey levels of the three 
images (skewness, kurtosis and 5th order) are so close to each other that the resulting image remains in grey tones too. 
As for the PCT and PPT techniques, the composite RGB images give satisfactory results, but the TSR composite image 
is still the best: more detected defects, higher color contrast, better sensitivity of the colors to the defect depths and lower 
noise in the sound zone (disappearance of the patterns due to the structure of the composite, constituted of plies of vari-
ous orientations). 

 
 

 

 

Fig. 9. Comparison of the present TSR-based method to other data processing techniques producing defect images. 
First three top lines: grey level images (256 bits) of individual component; bottom line : RGB projection of these 
components. Caution: if reproduced in grey tones, the colour images of the bottom line color will not be meaningful. 
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From a computational point of view, the present approach is comparable to PPT and HOS: they are all very fast. 

The different processing operations were performed with MATLAB on a 2 Quad-Core Intel Xeon 2.53 GHz Windows PC 
with 12 GB RAM. For the 12,000 frames sequence considered here (processed zone of 194x166 pixels), extraction of 
coefficient images takes 14 s, to be compared to 19 s  for PPT or HOS. On the contrary, the PCT approach is very de-
manding in memory (12 GB required) and time consuming (half an hour) though a computational strategy for the SVD 
was used to take into account that frames are less numerous than pixels in our example [15]. 

Although these comparisons remain mostly qualitative, it can be concluded that the present method gives excel-
lent results, both in terms of defect detectivity and in terms of processing rapidity. A more quantitative comparison of the 
images of Fig. 9 will be performed in the near future, based on the evaluation of the signal-to-noise ratio (SNR) and of 
the sharpness of every defect, for all images and all methods. 

 

8. Conclusions 

The point of the present work was to propose a post-processing technique aiming at improving the detection 
of defects in structures using pulsed thermography. One major stake was that the technique had to be usable by op-
erators, typically in an industrial context, with no necessity for them to have any experience in the heat transfer sci-
ence field. Therefore, not only the whole procedure had to be fully-automated, with a restitution time as short as pos-
sible, but also the final result had to enable a reliable detection of defects, with minimal subjectivity. The approach 
suggested in this article is to take full advantage of the coefficients of the logarithmic polynomials used by the TSR 
technique, which were unexploited for themselves so far, by producing a unique composite image resulting from the 
projection of the three highest-rank coefficient images in an RGB basis. It is applied to a pulse thermography experi-
ment carried out on a carbon/epoxy coupon, containing artificial defects embedded at various depths (up to 4 mm). 
The results highlight the numerous advantages of this new TSR-based technique: 

- as long as detection only is aimed at, all defect information is contained in this one composite image, so that no 
time-consuming image selection process is needed anymore; 

- the construction of the composite image does not need to define a sound zone, which is usually a burning issue in 
NDE by pulse thermography; 

- even though the composite image cannot be used a priori to identify the depths of the detected defects, each col-

or level is associated with a given depth, assuming that their severity is identical from one another. 
The logarithmic polynomial fitting is now considered as a basic pre-processing operation, useful for any data 

processing adapted to pulse thermography [18,19], the present method included. Once the logarithmic polynomial fitting 
achieved, the extra-time required to build the RGB composite image is almost negligible: less than one minute on a regu-
lar laptop computer for the present experiment, during which 12,000 thermographic images of 320x256 pixels were rec-
orded and processed. The objective in terms of time processing reduction is then reached too. 

The qualitative comparisons that were made with other well-known data processing techniques, such as PCT, 
PPT and HOS, confirm the value of the present method, both in terms of efficiency to detect defects and in terms of sim-
plicity and rapidity. Obviously, the procedure now needs to be applied to other types of materials and structures. Several 
studies are already in progress in ONERA, among which the detection of manufacturing defects in new-generation wo-
ven composite materials. 

Furthermore, the presently proposed RGB projection was successfully applied to the three other tested methods 
(PCT, PPT and HOS) and was found efficient to compress and synthesize the thermal data which was, so far, scattered 
in several images. In the near future, and for the particular case of the TSR method, the RGB projection will be improved 
following three directions:  

- automation of the selection of the three components to be projected;  
- optimization of the final composite image in order to maximize the defect detectability by taking into account the 

human eye sensitivity to each of the RGB colors (what color should be attributed to each component, with what amplif i-
cation);  

- assessment of the defect depth information contained in the composite image. 
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