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INTRODUCTION
Many materials of industrial interest do not conduct heat equally well in all directions and are

called anisotropic bodies. This holds for example for crystals, wood, laminates, fiber–reinforced
composites, and many other materials. Therefore, heat conduction in anisotropic materials has
numerous important applications in various branches of science and engineering. In this work we
present an analytical solution of the three dimensiononal heat conduction equation in anisotropic
media.

THEORY
The geometry of the structure investigated is shown in Fig. (1), with homogeneous boundary

conditions of the third kind.

Figure 1: Right semi–infinite slab geometry in Cartesian coordinates with mixed homogeneous
boundary conditions on five surfaces. The amplitude of the thermal–wave heat flux is uniform
distributed across the surface z = 0.

The governing partial differential equation is given by

ρc
∂

∂t
T (x, y, z; t) = k11

∂2T

∂x2
+ k22

∂2T

∂y2
+ k33

∂2T

∂z2
+ (k12 + k21)

∂2T

∂x ∂y

+ (k23 + k32)
∂2T

∂y ∂z
+ (k31 + k13)

∂2T

∂z ∂x
+Q (x, y, z; t)

(1)

where kij is the thermal conductivity tensor (i = 1, 2, 3 and j = 1, 2, 3).
To eliminate cross–derivatives in Eq. (1) a special linear coordinate transform is introduced,
which reduces Eq. (1) into a canonical form (Eq. (2)) [2].

X = x+ q1 y + q2 z

Y = q3 y + q4 z (2)
Z = q5 z

q1 to q5 in Eq. (2) are the coordinate transformation coefficients.

For orthotropic media Eq. (1) reduces to

∇2T (X,Y, Z;ω)− σe2T (X,Y, Z;ω) = −Q (X,Y, Z;ω)

ke
(3)

with q1 = q2 = q4 = 0, q3 =
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2k33 and σe =

√
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is the effective thermal diffusivity, ke is the effective thermal conductivity and σe is the
dipsersive complex wave–number.

GREEN’S FUNCTION
The boundary value problem was solved by derivation and use of frequency–domain Green’s

function [3].

∇2G (X,Y, Z |X0, Y0, Z0;ω )− σ2
e G (X,Y, Z |X0, Y0, Z0;ω )

= − 1

αe
δ (X −X0) δ (Y − Y0) δ (Z − Z0)

(4)

The application of the boundary conditions leads to eigenvalue equations and after some algebra
to the desired Green’s function [3].
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The series expansion coefficient Alm is given by Eq. (6a) and the complex thermal wave number
clm associated with the (l,m)–mode is given by Eq. (6b)
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Φl(X) and Ψm(Y ) in Eq. (5) are the eigenfunctions.

THERMAL–WAVE FIELD
For thermographic (lock–in) imaging a uniform harmonically modulated thermal–wave flux

across the plane Z = z = 0 was assumed (Eq. (7)).
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F0 is the amplitude and ω is the modulation frequency of the incident thermal–wave flux. The
thermal–wave field is given by
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with the series expansion coefficient
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COMPUTER MODELING OF THE ANALYTICAL SOLUTION
The parameters used for simulation are given in Tab. 1.

Table 1:
k11 k22 k33 ρ c h1 h2 αe ke

Material W
(m K)

W
(m K)

W
(m K)

kg
(m3)

J
(kg K)

W
(m2 K)

W
(m2 K)

m2

s
W

(m K)

anisotropic 7 0.7 0.7 1490 1200 13 13 3.91E − 6 7

The Green function (Eq. 5) and the thermal–wave field (Eq. 8) for a uniform incident thermal–
wave flux were computed with the mathematical software MAPLE.

a) b)
Figure 2: Series expansion coefficients of a) the Green’s function Alm and b) the thermal–wave field
Blm of an anisotropic material. The oscillating behaviour of the Alm is predominant. The
convergence behaviour of Blm is rather poor (usually appr. more than 100 elements must be
taken into account).

a) b)
Figure 3: a) Contour plot of the Green’s function in the normalized x– y–plane for z = 0.
b) Amplitude of the thermal–wave field vs. depth z with frequency as a parameter.

EXPERIMENT AND SIMULATION WITH FINITE ELEMENT METHOD
To demonstrate the influence of different thermal conductivities in x– and y–direction, the

temperature distribution of an unidirectional CFRP (Carbon Fiber Reinforced Plastic) sample was
investigated in the plane z = 0. In this case, the incident heat flux is a point like, pulsed laser–
beam source instead of a modulated, uniform thermal-wave flux given in Eq. (7). During the
measurement the x–axis was orientated along the higher thermal conductivity of the CFRP sam-
ple (k11 in Table 1). However, the experimental results and the results of FEM simulation are only
qualitative. That means, in both cases the temperature distributions are represented in arbitrary
units (cold to hot).

a) b)
cold

hot

Figure 3: a) Experimental investigation of the unidirectional CFRP sample with the following pa-
rameters: spot size of the laser–beam: appr. 0.1mm, pulse duration of the laser–beam: appr.0.5 sec,
sampling frequency: 50Hz, observation time: 10 sec after excitation. b) Results of simulation with
FEM. In order to take into account the experimental conditions, the boundary condition at z = 0 is
not the same as shown in Fig. 1 and is given by: −k33

∂
∂z

T (x, y, 0) = q0 − h3 T (x, y, 0). q0 is the
incident heat flux densitiy W/m2 of the laser beam and h3 is the heat transfer coefficient in negative
z–direction and was choosen equal to h1.
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