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Abstract

A finite element (FE) model is updated and optimized by making use of the surface
temperature distribution captured with pulsed thermography (PT) on a PVC plate.
The temperature distribution across the surface can be measured. As the amount of
experimental data to be used in this case is very high, an accurate, time-efficient adaptive
response surface optimization algorithm is developed. The FE model will become more
accurate and the simulations more realistic. The major advantages of using PT are that
one picture contains the complete structure temperature data and that it is a non-contact
technique.
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1. Introduction

The study of Pulsed Infrared Thermography (PIRT) has become an important aspect
of Non-destructive Evaluation Techniques (NDE) for damage detection in metallic
structural elements [1], as well as CFRP (Carbon Fibre Reinforced Polymer) and
GFRP (Glass Fibre Reinforced Polymer) composites [2]. There are many advantages of
thermography, these include the fact that no coupling is required, it can be performed
in-situ, it can cover large areas and it is a quantitative method [3, 4]. A disadvantage is
that there is a limit on the thickness of the structure being monitored [5]. A problem of
signal processing in the field of active thermography methods is very important. With
the help of custom developed image and signal processing algorithms, it is possible
to detect small discontinuities inside structures. By reducing the amount of data, the
process is accelerated, but a certain decrease in accuracy has to be kept in mind.
On the other hand, computer simulation is an economical and fast way to determine
and simulate material behaviour. Finite element (FE) analysis has been applied as a
verification tool in some applications involving infrared thermography [6, 7].
In this study, it is concluded that identical trend variations exist for both physical and
analytical data with satisfactory agreement between both approaches. In this paper a
method is presented to build an accurate finite element model by optimization with
reduced PIRT data. The paper is further organized, starting with a motivation for the
research, follewed by a description of the PIRT measurements, proceeding with the
definition of the COMSOL model. Next, the optimization method based on an adaptive
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response surface method, described in [8] is discussed. The optimized model could be
used in failure detection to assist the IR measurements and combine the benefits of
surrogate modelling (fast and economical efficient) with IR NDT. It is made possible
to adapt the material properties of the FE model to the realistic values of the test sample.

There are several issues that motivate the present research:

• Extensive calculation time issues for complex design models in thermography simu-
lations. Despite the fast evolution of increasing performance of desktop PCs during
the past years, complex FE models with a high number of nodes and elements
still suffer from high calculation times in order to solve and combine the necessary
internal equilibrium equations [8].

• The use of realistic parameter conditions improves the accuracy of FE models. With
recent designs there are more and more FE models available after development.
They could be reused in further maintenance and monitoring steps or for extreme
condition simulations on high cost structures.

• The proposed technique will be implemented in Structural Health monitoring and
NDTE (Non-destructive Testing & Evaluation) applications. It can also be used to
study environmental influences on materials.

• By updating the results with an FE model it will be possible to eliminate the time
inaccuracy of microbolometer camera’s.

2. Methodology

The proposed research is based on the Adaptive Response Surface Optimization strat-
egy described in [8]. The algorithm is adapted for first order heat transfer problems and
the combination of experimental thermographic data with FE model data. The goal is
to update 7 parameters including several material specific parameters and specific ex-
perimental set-up parameters in a FE model. The resulting FE model updated with
thermography simulations will produce similar results as expected from performed ex-
perimental measurements.

2.1. Defined test case

There is made use of a flat bottom hole plate, normally used to simulate the temperature
impedance of delamination failures in composite materials. In this research the used
material is a homogeneous Poly Vinyl Chloride test plate. Thereby is the chosen test
case based on a bypass methodology for false positive measurements. This good thermal
insulator material has isotropic distributed material properties [9] which delivers less
necessary material parameters to optimize.

2.2. Thermographic measurements

In the following section there will be explained how the experimental measurements
are performed in laboratory conditions and the used measurement technique will be
described.

2.2.1. Experimental set-up

The PVC plate as shown in figure 1 (a) is heated by two heat sources of 1,000 W
each orientated to the test plate. The sources are positioned straight to the plate as
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Table 1. Measured experimental athmospheric parameters, used tools: Testo 435.

Condition Value Device

Room Temperature [degC] 19.73 Testo 435

Humidity [%] 37.6 Testo 435

Reflected temperature [degC] 18.1 IR Camera and Aluminium reflection mirror

shown in figure 1 (b). There is made use of a Xenics Gobi 1471 microbolometric camera
with a detector wavelength range of 8-14 µm, a NETD (Noise Equivalent Temperature
Difference) of ≥ 50mK and a frame size of 384x288 pixels. [10, 11] The camera is placed
on the centre-to-centre distance between both heat sources. The heating and cool down
times are symmetric, both 75 seconds. The camera and heat sources are located on a
distance of 1m. The atmospheric conditions are held stable and the measurements are
performed in a climatic stable environment with values described in table 1.
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Figure 1. Left: Front and side view of the PVC plate (a) and Rigth: Experimental setup (b).

2.2.2. Description of applied method

The used thermographic measuring method is based on pulsed thermography (PIRT).
One heat pulse with a fixed active time of 75 seconds is used to heat up the test sample
resulting in a decay of approximately 10 degrees. An automatic triggering for correct
timekeeping is not used in this case. There is chosen to work with uncooled cameras,
based on the microbolometer principle for their good price-value ratio and to define
a methodology which could be economical efficient. In general, thermographic cameras
based on the principle of microbolometers don’t have a fixed frame rate neither an exact
trigger point. Triggering of microbolometer cameras is software based. The software
decides to start measuring from the first following frame after the trigger, this is called the
rolling shutter principle. Thereby there is a time offset of 1/frame rate between the heat
source and the camera. So the time inaccuracy of each frame has to be considered. Besides
that, the heat sources have their own start-time, depended on the ambient temperature.
This is the reason why there has been chosen to set the heat pulse trigger times as
unknown, even as the effective power of the heat source.

2.2.3. Conversion

To decrease the amount of data and to reduce the measurement noise, the raw sensor
temperature data for every frame is averaged to every second. Concerning the scope
of this research, as updating the global material parameters in the FE model, this is
allowed without a significant information lost. Thereby there is a decrease in frame rate
fluctuation and it is made possible to compare different camera data objective in section
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3.1. For the optimization there is made use of the temperature evolution far away of
the flat bottom holes as reference value and the temperature profile of the largest and
deepest flat bottom hole as second target set. For the reference value there is used a
dataset of nodes accordingly selected equally distributed over the test plate surface.

2.3. Finite Element modelling

The model is built and simulated in COMSOL Multiphysics. The governing differential
equation is a pure conductive heat transfer with an external heat source, formulated in
Eq. (1) where ρ is the density, Cp is the material heat capacity at constant pressure,
T is the absolute surface temperature, κ is the material thermal conductivity, t is the
time and Q(t) is the time dependent heat source [12]. The air between the lamps and
the surface is neglected. The simulation set-up is shown in figure 1(b). The numerical
solution can be considered sufficiently accurate for thermographic NDT applications as
described in [13].

ρCp
∂T

∂t
+∇. (−κ∇T ) = Q with T (x, y, z, 0) = Tambient = 292.88[K] (1)

The external heat source has a non-linear characteristic as defined in Eq. (2) where ε
is the emissivity, Fambient is the field of view factor of the ambient reflections, σ is the
Boltzmann constant and P is the power of the heat source [12]. There are made a few
simplifications:

• The air velocity is assumed to be 0 allowed by the laboratory characteristics.
• The thermal conductivity κ of PVC is isotropic [9].
• The test sample is opaque and behaves like an ideal grey body.

Q(t) = ε
(
P (t) + FambientσT

4
ambient − σT 4

)
with

{
P (t) = P for t ≤ 75
P (t) = 0 for t > 75

}
(2)

2.3.1. Model characteristics

The FE model is build of 15200 tetrahedral elements with a maximal growth rate of
1.2. The physics are designed with 2 external uniform radiating heat sources. In the
simulation is assumed that the heat distribution is uniform and that the heat source
housing is an ideal reflector. The power of the heat sources is multiplied with a correction
coefficient for the reflection of the back of the lamp housing. The multiplication factor
is in correlation with the ratio of the surface of the reflecting housing Sreflective over
the total surface of the housing Sreflective+glass as presented in figure 2 and Eq(3). The
temperature data points used for the optimization are placed on a grid with the same
spacing as the experimental sensor grid.

Sreflective
Sreflective + Sglass

(3)

In reality there is some heat absorption of the heat source housing and the glass but
in order of the stable atmospheric conditions, the distance between heat sources and test
plate, the short pulse time and the conductive isolation of stationary air, this effect is
negligible small.
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Figure 2. Schematical representation heat lamp abstraction to external heat source.

Table 2. Material Properties [9, 14–16].

PVC Halogen Spots

Thermal Conductivity k [W/(m.K)] 0.147 10

Heat Capacity Cp [J/(Kg.K)] 1050 10

Density ρ [Kg/m3] 1445 8700

Surface Emissivity 0.92 0.01

2.4. Optimization

For the optimization algorithm there is made use of the adaptive response surfaces where
the experimental data is used as target for the FE model. The material properties of table
2 and the experimental parameters of the pulse time, the heat power and the ambient
temperature are the parameters which will be optimized as shown in table 3. The density
is excluded from the optimization parameters because it is a simple measurable, non
changing parameter in industrial applications. The optimization makes use of the relative
temperature differences θ = T − T0 to reduce the measurement uncertainties but fits it
the absolute temperatures as shown in figure 6.

The Adaptive response surface optimization algorithm is used to optimize numerical
models with a large amount of data points and the time reducing by the algorithm
increases as the amount of parameters rises [17]. The optimization procedure could be
divided in a certain steps:

(1) Run starting reference simulation points and building a correct object function of
the difference between the FE model and the target value (experiment or validation
model).

(2) Replace the FE model by a meta model of response surfaces to decrease the opti-
mization time.

(3) Run the optimization routine on a well-defined object function. In this paper,
the object function is weighted to increase the differences between the different
measurement points (pixels) that are taken into account.

(4) Use the estimated parameter values as input parameters for a new FE model that
corrects the response model.

(5) Only the points the closest to the minimum will be used to form the response
surface.

The response model to be optimized is not built from a pre-defined number of design
experiments but is adapted and refined during the optimization routine by a pan and
zoom command [8].
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Figure 3. Relative temperature for different
camera’s in function of the corrected time.

Figure 4. Thermal result of Xenics camera after
75 sec of heating.

3. Results

In a first stage the experimental values are compared between 2 independent measure-
ments with the Xenics camera and one measurement of a Flir A320G device. Besides, the
optimization algorithm is validated between 2 FE models to check the convergence to a
global minimum with different optimization strategies. And in a last part there is made a
comparison between different optimization strategies with the experimental target input.

3.1. Experimental results

The experimental measurements from the Xenics camera are verified with a Flir A320G
device with comparable specifications and autofocus, specified in [18]. The absolute tem-
perature uncertainty is ±2K. The target value of the optimization is an averaging of
2 independent measurements of the Xenics camera. To compare the data and to in-
crease the accuracy, the measure points are interpolated between the different frames
and averaged to 1Hz as explained in section 2.2.3 and there is worked with the relative
temperature between the time step and Tambient. The results are shown in figure 3. And
as could be seen, the increasing flank of the heat pulse is sufficiently coherent between
the different measurements. Unfortunately there could be seen that the error between
the Flir camera and the Xenics camera increases on the negative flank. The reason for
this could be found in the fluctuating frame rate of both cameras but this should be
verified. In figure 4 is the thermal result shown after 75 sec. The rectangular heat spot
on the bottom right is the reflection of one of the heat sources and is excluded from the
further analysis. The more interesting heat spots are the deepest flat bottom holes in the
plate.

3.2. Optimization results

In a first stage the optimization algorithms are validated between 2 FE models to check
for convergence and accuracy. In the following subsections the different recursive models
will be discussed.

There is made use of a multidimensional piecewise polynomial fitting, based on [8]. For
all time steps, there is made a regressive polynomial model of the relative temperature of
the plate surface versus the different optimization parameters. The parameters to opti-
mize for are defined in table 3 and chosen accordantly with the measurement boundaries
in literature. The real values are described in table 2. The mass density is excluded from
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Table 3. Optimization parameters with their boundary conditions [14].

Parameter Lower boundary upper boundary

Heat source power [W ] 800 1000

Time until start of the heat pulse [s] 0 10

Time of the heat pulse [s] 70 80

Ambient temperature [K] 280 300

Thermal conductivity k[W/(m.K)] 0.12 0.209

Specific heat capacity Cp[J/(Kg.K)] 1000 1800

Emissivity 0.90 0.98

the optimization parameters to avoid interference with the specific heat capacity and for
reasons explained in 2.4.

There is made use of 2 different optimization solvers, a non-linear least squares solver
(lsqnonlin) and a least-squares curve fitting solver for data fitting purposes (lsqcurvefit).
Within both solvers, both algorithms, the Levenberg-Marquardt (LM) and the trust-
region-regression (TRR) are compared [19]. The object function of both solvers is formed
by the comparison between the FE model and the target values from the experiments
for at least five points and can be extrapolated for all points. In the objective function
of the lsqnonlin solve there is made use of some extra conditions to cause convergence.
This extra conditions are based on post processing data extracted of the experimental
data to retrieve the correct pulse times and ambient temperature. There is made use
of weighting factors in the lsqnonlin solver to improve the converged result between the
several objective functions.

3.2.1. Model validation

To verify the proposed methodology on a heat transfer model and the choice of estimated
parameters, the first step was to switch the unknown experimental target value with a
well-known FE validation model. This simulation has a fixed value for all the estimated
parameters and could be compared with a perfectly controlled, noiseless experimental
measurement. The methodology could be verified by running the defined optimization
algorithm with this fixed simulation as target value. The results of the validation routine
are mixed and strongly dependent on the option values of the optimization algorithms
and the choice of parameters. In this paper there is studied after the effects on dependent
parameters as the heat source power and pulse times or Cp and k. To retrieve a sufficiently
accurate value of all the 7 parameters, there should be looked after the most ideal option
values to calibrate the methodology. The results are defined in table 4. Further on there
is made a comparison with an optimization without the ARSM method which solves a
changed FE-model each time the optimization solver makes an iteration. As could be seen
in table 4, reasonable approximation results are acquired for 6 of the 7 parameters. The
reason that the specific heat does not converge to the correct value is unknown. There
could be suggested that it strongly depends on the influence of that specific parameter on
the response of the system. For example, an increase of 50% of the thermal conductivity
results in an increase of 50% of the thermal diffusivity. But a same increase of the
specific heat capacity or the density would result in a decrease of 33%. Further on both
parameters are dependent on each other which results in a conflict of importance. This
combined with the influence of all the other parameters may result in a neglectable
importance of the specific heat capacity parameter in the simulation model by polynomial
approximation. Remarkable is that especially the LM algorithm does not have the same
problem with the dependent parameters of the heat source. These approximations should
be investigated more in detail in the future.

Globally there can be concluded that the Levenberg-Marquardt algorithm delivers
better results than the trust-region-reflective but needs more optimization runs in order
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Table 4. Optimization results model validation.

Description Target
FE

optimization

Polynom
lsqnonlin

LM

Polynom
lsqnonlin

TRR

Polynom
lsqcurvefit

LM

Polynom
lsqcurvefit

TRR

Heat source power [W] 920.00 919.94 922.22 958.76 916.22 946.87

Time left [s] 0.5000 0.5000 0.19165 0.50163 0.87050 1.2514

Time right [s] 75.500 75.504 75.528 75.453 75.505 75.641

Tambient [K] 293.15 293.15 293.16 293.09 293.15 293.21

k [W/(m.K)] 0.14700 0.14671 0.14703 0.15230 0.14738 0.14190

Cp [J/(Kg.K)] 1050.0 1598.6 1602.3 1727.5 1604.1 1542.4

ε 0.92000 0.92000 0.91445 0.94800 0.92622 0.91169

Optimization runs / 5 21 13 18 10

Optimization time [sec] / 74886
5304.4

(3204.4)
5062.6

(2962.6)
5259.3

(3159.3)
5092.2

(2992.2)

rms residual / 0.24693 3.3549 14.296 0.62542 7.0650

to converge as can be seen in figure 5. A second result can be that the lsqcurvefit delivers
better results than the lsqnonlin solver. Side mark to this results is that the lsqnonlin
solver needs accurate weighting factors which results in an unstable result. The lsqcurvefit
solver delivers more stable results without weighting factors in less optimization runs. The
most accurate results are found with the FE optimization without the ARSM method
and this in the fewest optimization runs. By comparison of the optimization times should
be mentioned that the times of the polynomial optimization implements the calculation
time of the 12 starting points as described in point one of section 2.4. The used time for
the starting points is the same for all polynomial optimizations and is around 2100.0 sec.
Thereby the actual optimization time is mentioned in brackets in table 4. Out of this data
we could conclude that the ARSM method results in a 25 times faster optimization than
the FE optimization. And by using the lsqcurvefit solver with the Levenberg-Marquardt
(LM) algorithm the residual value is just slidely more than the FE optimization routine.

There could be concluded that the adaptive response optimization delivers a faster
result but that the convergence and accuracy strongly depends on the option settings.

3.2.2. Regresive optimization with polynomials of experimental target values

The experimental target values are compared with FE model data placed on a grid,
accordantly with the pixel grid of the camera. In a first stage there is made use of an
objective function based on 7 points, the three centres of the largest flat bottom holes
and 4 reference points distributed following the first diagonal from the left bottom to
the right upper corner, between the flat bottom holes. The objective functions are build
on the same way as mentioned in section 3.2.1. The results and accuracy of the different
optimization methods are shown in table 5. As could be seen in table 5 the lsqnonlin
optimization delivers a result in less than a half of the optimization steps from the
lsqcurvefit. But is the total optimization time of the lsqcurvefit functions hardly more
to retrieve a smaller root-mean-squared residual value. In figure 6 is compared the time
plot of the temperature profile for the largest defect of figure 4 for the measurements and
the approximations. There could be seen that the lsqcurvefit approximation delivers the
best results for the decay and the time positioning of the maximum temperature point.
Only the height of the maximum temperature has some overshoot which is less for the
LM algorithm than for the TRR.
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Table 5. Optimization results experimental set-up by polynomial regression model.

Description Target
Polynom

lsqnonlin

LM

Polynom

lsqnonlin

TRR

Polynom

lsqcurvefit

LM

Polynom

lsqcurvefit

TRR

Heat source power [W] [850-1000] 920.47 923.84 901.40 951.05

Time left [s] [2.0-3.0] 0.48272 2.5816 6.1040 4.7460

Time right [s] [72.0-73.0] 73.328 78.459 71.436 72.666

Tambient [K] [291.55-291.15] 291.97 291.55 291.39 291.29

k [W/(m.K)] [0.12-0.209] 0.084509 0.082792 0.13550 0.13583

Cp [J/(Kg.K)] [1000-1800] 825.77 1000.0 833.11 1000.0

ε [0.94-0.96] 0.91798 0.92377 1.0125 0.98871

Optimization runs / 10 7 23 25

Optimization time /
5649.5

(3549.5)

3291.0

(1191.0)

5729.0

(3629.0)

5964.3

(3864.3)

rms residual / 434.00 519.62 422.67 421.44

Conclusions

In this paper, a new adaptive method is described to update the material parameters
of an FE model by pulsed thermography measurements. There is a large optimization
time decrease by using an adaptive regressive model of the FE model. The importance of
the time decrease rises with the amount of parameters used in the optimization routine.
With this method it is possible to validate an FE model with experimental results and
adapt it properly. This delivers a large amount of possible applications where the bene-
fits of thermography and FE modelling could be combined. The best and fastest results
are achieved by using a lsqcurvefit solver and the Levenberg-Marquardt algorithm. This
delivers results which are independent of weighting factors and the strategy is robust
for some dependency between parameters. Unfortunately not all parameters are approx-
imated perfectly and the residual value is dependent on the noise in the signal but the
global result for each pixel retrieves promising accordance.
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