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Abstract 

Laser active pyrometry and lock-in thermography for characterization of micrometric layers on plasma facing 
components from European tokamaks have been under experimental and theoretical studies in CEA (France). The 
samples with a deposited layer of different thickness ∼ (1 - 100) μm were under heating by a Nd-YAG repetition rate laser 
(1 Hz - 10 kHz). A pyrometer system was used for temperature measurements in (500 - 2600) K range. For both 
methods, the layer characterization was provided by the best fit of the simulation data with the experimental ones. The 
computer simulations were performed with the developed theoretical models. Some practical applications and possible 
improvements of the methods will be discussed. 

1. Introduction 

Laser active thermography methods for non-destructive testing and diagnostics have found their applications in 
different fields of industry, technology, and arts. For nuclear field, the methods may offer the additional advantage of 
automated remote control and tests of nuclear installations without personnel attendance in contaminated zone. In 
controlled thermo-nuclear fusion, a number of technological problems should find their solution to provide an appropriate 
functioning of installations. Formation of deposited layers with a high content (up to 50%) of hydrogen isotopes (D and T) 
on plasma facing component (PFC) may be mentioned as one of the problems. A friable carbon deposited layer is a 
source of micrometric dust which increases fusion plasma losses. High tritium content is also quite undesirable for 
personnel radiation exposure and nuclear safety. The future use of new materials such as tungsten, beryllium and 
carbon fiber composite (CFC) with tungsten protective layer makes the development of in situ diagnostics by 
thermography methods of a vital importance. 

In these methods, the surface under analysis suffers a repetition rate laser heating. Based on thermal response 
of the heated surface, one may get information on its mechanical properties (thickness, under surface defects and 
cracks) and also on thermo-physical features (thermal conductivity and diffusivity, thermal resistance coefficient of the 
layer/surface interface). Surface characterization is provided by comparison and best fit of the simulated results (heating 
temperatures or phase shifts) obtained by the adequate theoretical models with the experimental data.   

In search for appropriate in situ non-destructive diagnostics, laser active pyrometry and lock-in thermography 
have been under experimental and theoretical studies in CEA (France) [1-8]. Here, theoretical studies will be presented 
with respect to the experimental investigations on PFCs with deposited layers from European tokamaks. For heating 
temperature calculation, two approaches (direct numerical finite-difference solution and analytical solution followed by 
calculations) may be used. In a general case with the temperature-dependent parameters and with a moving laser beam, 
it can be made only by direct space-time (3+1 dimensional) numerical simulations by the finite-difference methods. With 
the direct numerical solution, it is easy to take into account the temperature dependence of the thermo-physical and 
optical parameters. However, even for 1D case, it is difficult to trace the heating temperature for both long time intervals 
and a long spatial scale. In the case of constant thermo-physical parameters, the analytical expressions for laser heating 
of complex surfaces can be deduced and analyzed. With the analytical solution approach, it is easy to take into account 
3D properties and to trace them for a long time and on a long spatial scale. 

The solutions obtained for the periodical laser heating and the method developed for direct phase shift 
calculation were applied for simulations of the experimental data obtained by laser active pyrometry and lock-in 
thermography. 

2. Layer heating by repetition rate laser beam 

The models for laser heating of complex surfaces with a micrometric layer (1 – 1000 μm) on a substrate were 
developed in [1-2, 6-8]. The calculations of the surface temperature under laser heating are generally related with a 
complex nonlinear thermo-physical problem associated with the temperature dependence of the thermo-physical and 
optical properties of the surface. The standard heat equations [9] for the surface (s) with a layer (l) of thickness d and 
with an arbitrary heat transfer coefficient (h > 0) for the layer/substrate interface are as follows:  
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The boundary conditions on the layer/substrate interface should reflect the continuity of the flux of the thermal 
energy through the surface z = d. It can be written as: 
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To take into account the heat resistance between the layer and the substrate, the boundary condition relating 
the finite temperature jump and the heat flux on the interface should be introduced: 
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The consideration of the heat resistance requires introducing the second interface layer between the first boundary layer 
and the substrate, where the heat flux could be inhibited, and the interface temperature jump corresponds to the 
temperature difference on the different sides of the second layer. However, such approach requires also introducing 
more adjusting parameters. Because of a poor knowledge about the physical-chemical properties of the layer/substrate 
interface, it is more reasonable to describe it by phenomenological relation (3) with the only adjusting parameter h.  

The boundary condition at z = 0 (at the interface between the layer and the ambient air) should be added to 
complete the statement of the problem. It can be written as: 
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where μ is the convective heat transfer coefficient and T0 is the ambient air temperature. In our experimental conditions 
we can safely assume that μ = 0.  

The initial condition to the system of equations (1) will always be supposed to be of the form T(t = 0, r ) = T0, 
where t = 0 is the time moment of the laser switching on. 

Laser heating source terms Ql (t, r ) and Qs (t, r ) are deduced from macroscopic electrodynamics [10] and can 
be written as 

                 ( , ) ( ) ( , ) ( ), ( , ) ( ) ( , ) ( )l s
l Z XY T s Z XY TQ t r f z f x vt y f t Q t r f z f x vt y f t= − = −
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where fXY(x, y) and fT(t) are the spatial and temporal laser beam profiles, ν [m/s] is the laser beam scanning velocity 
along the x-axis, and   
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with εl and εs the complex dielectric permittivities of the layer and the substrate. With a good accuracy, we can safely 
average the source term Ql (t, r ) inside the layer (that denotes in expression (4) by overlining) over the laser field spatial 
oscillations. Here, I0 is the peak laser intensity, c is the light velocity, ω is the frequency of the laser light, lε ′′  and sε ′′  are 
the imaginary parts of the complex dielectric permittivities connected with the corresponding absorption coefficients of 
the layer and the substrate by relations lll cn/εωα ′′=  and sss cn/εωα ′′= , with ( )lln εℜ=  and ( )ssn εℜ=  the 
refraction coefficients of the laser light in the boundary layer and in the substrate, respectively. The light reflectivity 
coefficients on the interfaces between the corresponding medium (layer or substrate) and vacuum, namely, 
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are also expressed through the parameters connected with the dielectric permittivities εl = (nl + iκl)2 and εs = (ns + iκs)2. 
 
2.2. Numerical and analytical solutions 
 

The laser heating calculations in a general case (with the temperature-dependent parameters and with a moving 
laser) can be made only by direct space-time (3+1 dimensional) numerical simulations by the finite-difference methods. 
With the direct numerical solution, it is easy to take into account the temperature dependence of the thermo-physical and 
optical parameters. It should be regarded as an advantage of this method. However, it is difficult to trace the heating 
properties for both long time intervals and a long spatial scale even for 1D case, let alone 2D or 3D cases. It should be 
considered as a disadvantage of this method.  

On the other hand, in the case of constant thermo-physical parameters the analytical expressions for laser 
heating of complex surfaces can be deduced and analyzed. With the analytical solution approach, it is easily  to take into 
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account 3D properties and to trace them for a long time and on a long spatial scale. This is an advantage of this method. 
The necessity to neglect the temperature dependence on the sample parameters should be considered as a 
disadvantage of this method. 

Generally, for temperature-dependent optical and thermo-physical parameters of both the layer and the 
substrate, the solution of the equations (1) in 3D-space, together with the boundary conditions (2a-c) corresponds to a 
difficult non-linear problem even for moderate computers, especially if we are interested in the temperature distributions 
on large scales, both in space and time. For this reason, and also because of poor knowledge of the temperature 
dependences of some parameters for media under study, we will consider the analytical solution of the system of 
equations (1) assuming the mean constant values independent of the temperature (in the working range of temperatures 
between the ambient and the sublimation/evaporation temperatures) for all the optical and thermo-physical parameters 
involved in the problem. With the constant parameters, the problem under study is linear. Its solution can be obtained by 
the Fourier method. Omitting the details of the derivation, the final result for the heating temperature distribution ∆T(t, r ) 
≡ T(t, r ) – T0  in the Cartesian coordinates can be presented as follows: 
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where 22
yxr λλλ += , and functions )(zZ

zλ
 and )(zZ

nχ
 are the boundary problem eigenfunctions corresponding to 

continuous and discrete spectrum of the eigenvalues, λz and χn , respectively. In expression (6), the different functions 
are defined by the following integrals: 
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Here and after, the designations lll ckD /=  and sss ckD /=  for the thermal diffusivity coefficients of the boundary 
layer and the substrate, respectively, are used. 

For many particular cases important for applications, the integrals in expressions (7a-e) can be taken 
analytically. For example, function Φ(λx, λy), that is defined by the spatial distribution fXY(x, y) of the laser intensity, can 
be simplified in the case of the Gaussian distribution, when fXY(x, y) = exp(-(x2+y2)/ro

2), and also for the homogeneous 
distributions restricted either by a circle of radius r0 or by a square with square side 2r0: 
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Similarly, functions Θ(λx, λy, λz, t) and Θn(λx, λy, t) (they are defined by the time dependence of the laser 
intensity) can be simplified for continuous laser radiation, or for the pulsed laser radiation with rectangular pulses (and 
also with the pulses of some other specific forms). For continuous laser radiation with fT(t) = 0 at t < 0 and fT(t) = 1 at t > 
0, these functions are reduced to the following: 
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where xzrsz iD νλλλ −+=Λ )( 22  and xnrsn iD νλχλ −−=Λ )( 22 . For repeating rectangular laser pulses with duration τp and 
repetition rate νL (when fT(t) = 1 at m/νL < t < τp + m/νL, m = 0, 1, 2,…, and otherwise fT(t) = 0) these functions are 
expressed as follows: 
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with τbp the time between two consecutive pulses, so τbp = 1/νL - τp . The simple expressions for these functions can be 
also obtained if the laser is switched off at the moment t = T, giving the description of the relaxation regime of surface 
cooling. 

Let us discuss functions Ψ(λr, λz) and Ψn(λr) defined by expressions (7d) and (7e), respectively. One should 
know eigenfunctions of our boundary problem, ( )

z
Z zλ and ( )

n
Z zχ

, which are involved in the expressions (7d-e), and 

also in expression (6) for the heating temperature. For arbitrary possible eigenvalue λz, the eigenfunction ( )
z

Z zλ  should 

satisfy the equations: 
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the latter is written for  μ = 0, i.e., neglecting the convection heat transfer on the external surface boundary at z = 0. For 
the heating problem with a deposited layer on the surface, the eigenvalue spectrum generally contains both the 
continuous part and the discrete part. The continuous part of the spectrum corresponds to the real λz values. In this case, 
the solution of equations (11a) and (11b), together with the boundary conditions (12), is as follows: 
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In the limit of h → 0, that is for completely imperfect heat contact between the layer and the substrate, the 
continuous eigenfunctions generally vanish in 0 < z < d range, i.e., in the range of the layer, but only except for the case 
of sin (λd) = 0, so in this limit the continuous spectrum is continuously transformed to the discrete one solely presented in 
the case of h = 0. 

For the discrete set of eigenvalues, with pure imaginary values of λz, we introduce the designation λz = iχ (χ > 
0). The set of discrete eigenvalues is denoted as χn  with n = 1, 2, .  .  . Then, the (normalized) eigenfunctions ( )
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The normalization constant an for an eigenfunction )(zZ
nχ  of the discrete spectrum is determined by the relation: 
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While analyzing the equation (16) for the discrete spectrum of eigenvalues, the following conclusions can be 
made. For Ds/Dl ≤ 1, equation (16) for each value of λr has no solutions. On the contrary, for Ds/Dl > 1, the discrete 
spectrum is always present (except only for 1D case, where we should put anywhere λr = 0). For each finite value of λr, 
the solutions belong to 0 < χn < slr DD /1−λ  range, where quantity λn is real, and the number of solutions increases 
with increasing the value of λr. If N(λr) ≥ 1 denotes the total finite number of solutions of equation (16) for a given value of 
λr, then χn(λr) denotes the discrete eigenvalue for 1 ≤ n ≤ N(λr). 

Now we have all the information to determine the functions Ψ(λr, λz) and Ψn(λr) defined by expressions (7d) and 
(7e), respectively. By carrying out analytically the integration over z with the expressions (4a-b), (13) and (15a-b), we 
obtain that: 
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Here, the following designations are introduced: 
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The obtained formulae finalize the description of the analytical solution of laser heating of a complex surface 
with an intermediate heat contact between the boundary layer and the substrate in a rectangular geometry, for a general 
case of a moving laser beam. 

In conclusion, we also present the simplified version of this solution in a cylindrical geometry, which can be 
successfully used for immobile laser beam (when v = 0) irradiating the given area on the surface, if the laser spot has a 
circular symmetry. In a cylindrical geometry, the heating temperature of the initially unheated medium being at t < 0 in 
equilibrium with the environment is described by the expression: 
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Here, we should also put the velocity v = 0 in expressions (7b-c), (9) and (10a-b) for Θ-functions. The more 
simplifications can be made in the 1D case. This case can be relevant for a wide laser spot, at specific set of the thermo-
physical and optical parameters of the media, at least at sufficiently short time of laser heating. In this case, one 
numerical integration over λz is only kept, providing fast calculations of the laser heating of the surface. 

To obtain the final quantitative results by analytical approach, the sizable numerical calculations should be still 
made according to the obtained expressions with multiple integrals and multi-scale functions. It is significant that in such 
calculations, the limitations on total duration of the laser heating are much lower. The calculations can be made for much 
longer time intervals of laser heating than it can be made by direct numerical simulations with the time-consuming finite-
difference methods. The obtained analytical solution of laser heating of complex surfaces was implemented in the 
computer code for numerical simulations. The calculations were made for different cases of the laser heating of the 
surfaces without and with a deposited layer. The extensive simulations of laser heating were applied to graphite surface 
with a deposited layer. 

The different regimes of the heating by a pulsed laser radiation (with 5 ns – 50 ms pulse duration and with the 
pulse repetition rate of 20 - 10000 Hz) as well as by a continuous laser were considered. The laser beam can be 
immobile or moving along the surface during the heating. The various temporal and spatial distributions (either the 
Gaussian or homogeneous in the different beam geometries) of the laser radiation acting on the surface were taken into 
account. The heating temperature was calculated as a function of time for different points located both just on the surface 
and deep in the interior of the surface medium. Two limiting cases of the heat contact between the deposited micrometric 
layer and the substrate were considered. The main attention was paid to the 3D “analytical” model with the mean 
constant optical and thermo-physical parameters, which gives possibility to trace the heating temperature on large 
temporal scales. For validation of this approach, the temperature dependences of the thermo-physical properties 
(specific heat, thermal conductivity, etc.) of the surface substances were taken into account in direct numerical solution of 
the heat equations. The laser heating simulations were made for the surface of the technical graphite (both without and 
with the friable deposited layer), for the continuous and pulsed laser radiation. 
 The density of both the substrate and the layer was taken as ρ = (1 – p)ρ0, where ρ0 = 2240 kg m-3 is the density 
of monocrystal graphite and p is the respective porosity. For technical graphite, it was taken as p = 0.25, and for a thick 
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co-deposited layer, it was found to be two times higher (in this case, it should be generally considered as an adjustable 
parameter). The thermal capacity (per unit of volume) was taken as Cp= ρC0, where C0 = 1500 J kg-1 K-1 is the mean 
reference value of the mass thermal capacity of dense crystal graphite (in the range of temperatures that we consider). 
For technical graphite, the constant thermal conductivity was taken as k = 100 W m-1 K-1. For a deposited layer, it was 
found to be three times lower (the thermal conductivity should also be considered as an adjustable parameter). The 
graphite with the chosen parameters has thermal diffusivity D = k/Cp ≈ 4×10-5 m2 s-1. The numerical model for laser 
heating can determine the surface temperature as a function of time, in-depth position, interaction parameters, and 
surface properties. It was applied to graphite with a deposited layer of thickness d = 1 µm ÷ 1 mm and for the laser 
pulses in ns ÷ ms range with the pulse repetition rate up to 10 kHz. 

 
3. Phase shifts calculations 
 
3.1. Basic equations and solutions for the stationary periodical laser heating 
 

The equations for time-dependent heating temperature ∆T (t, z, r) ≡ T (t, z, r) – T0 of a complex surface with a 
layer deposited on the substrate (T0 is the ambient temperature) can be written as they are presented in Sec. 2.1. In the 
stationary regime of laser heating, for the repetition rate laser with the repetition rate frequency νL, the time-dependent 
laser intensity I(t) (which is not obligatory of a simple sinusoidal form) can be expressed as the Fourier series: 
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where I0 is the mean laser intensity, and )/(tan 1)(
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phase and the laser complex intensity corresponding to the nth - order Fourier harmonic of the pulse repetition rate laser 
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where t* is an arbitrary time moment within the stationary regime. For example, for the rectangular laser pulses starting 
at t = 0 with the duration of 0.5 1−

Lν , that is, one half fraction of the laser repetition period, an = (2I0/(π n))(1 - cos(π n)) and 

bn = 0, so that 0)( =n
LPϕ . 

The thermal response of the sample can also be expressed as the Fourier series: 
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where ∆T0(z, r) is the mean steady-state heating temperature, and )/(tan),( 1)(
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are, respectively, the temperature phase and the complex temperature amplitude corresponding to the nth-order 
harmonic of the pulse repetition rate frequency νL. If the temperature trace is known either from the experiments or 
calculations, the heating temperature phase can be found from the expression, similar to the expression (23) for the laser 
pulse: 
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The temperature is measured in the laser spot centre on the surface (z = 0 and r = 0). Both the expressions (23) 
and (25) should be used for the phase shifts calculations of experimentally measured temperature traces with respect to 
the laser pulse phase. The mean heating temperature increasing rate (mean temperature derivative) should be removed 
if the measurements are made before the stationary regime of laser heating. The theoretical phase shifts can be derived 
from the calculated temperature traces obtained with the developed numerical model. This approach is very time-
consuming, especially in 3-D regime. The method of the direct phase shift calculations presented below seems to be 
more attractive. 
 
3.2. Method of the direct phase shift calculations 
 

For the temperature Fourier amplitudes ∆Tn (z, r), the following equations can be obtained: 
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The general solution of these equations can be sought as: 
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The initial condition ∆T(t = 0, r ) ≡ T(t = 0, r ) - T0 = 0 was used in the expressions (27) for the stationary regime. 

Three boundary conditions (2a), (2b) and (2c) (the latter with μ = 0) result in three linear relations between the functions 
F1n(ξ), F2n(ξ) and F3n(ξ): 
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The theoretical heating temperature corresponding to the one measured by the pyrometer can be found from the 
integral expression: 
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The solution of the system of linear equations (31) for F2n(ξ) is: 
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Here, )4/~exp(~5.0)~(~ 2ξξξ −=Φ  for the Gaussian laser beam and )~()~(~
1 ξξ J=Φ  for the flat-top laser beam, and now 

lllLn kCnir /2/~ 2
0

2
1 ρνπξκ −=  and sssLn kCnir /2/~ 2

0
2

2 ρνπξκ −= . In the numerical calculations, the laser beam was 

assumed to be the Gaussian, which is preferable due to a fast vanishing of the function )~(~ ξΦ  with increasing ξ~  (on the 
scale of ξ~  < 10). It is not the case for the flat-top laser beam with a sharp edge. For the phase shift calculations, it is 
sufficient to consider only the particular Fourier contribution ∆T1 corresponding to n = 1, that is, to the laser fundamental 
repetition rate frequency νL. The phase shift can be found from the expression 
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while ∆T0(z = 0, r = 0) and |∆T1(z = 0, r = 0)| can give the mean heating temperature and the temperature oscillations 
amplitude on the fundamental repetition rate frequency, respectively. 

The phase shift does not depend on the temporal shape of the laser intensity if the optical and thermal 
properties of the layer and substrate do not depend on the temperature. Thus, if only phase shifts are required, it is not 
necessary to introduce the experimental temporal laser pulse shape in the simulations. The phase shift is determined for 
the Fourier component on the laser repetition rate frequency. In this case, the phase shifts calculations for 3-D laser 
heating may be performed much faster than with the very complex and time consuming method with the full temperature 
traces calculations. 

The developed method of fast phase shifts calculations was applied to determine phase shift sensitivity. It was 
possible to calculate a phase shift as a function of νL and h in a wide range of their values. Generally, the phase shift is a 
non-monotonous function of both νL and h. The phase shift also depends on r0 (see Fig. 1). From these results, it was 
concluded that the influence of the laser repetition rate frequency on the phase shift is different for different heat contact 
coefficients in the range of 1 < h[kW/(m2 K)] < 1000 for d = 100 µm and 0.1 < h[kW/(m2 K)] < 10000 for d = 10 µm [11]. In 
the latter case, the phase shift sensitivity is strongly decreasing if the heat contact coefficient is beyond both the high and 
low range limits. For d = 100 µm, the phase shift sensitivity is also decreasing with the important increase in the laser 
repetition rate frequency. In this case, the moderate repetition rate frequencies (νL < 200 Hz) are preferable. 
 
 

 
 
 

Fig. 1. The surface plots of the phase shift dependence on νL and h for the TEXTOR graphite deposited layer on 
the TEXTOR graphite substrate, d = 100 µm. The laser beam radius is r0 = 100 µm (a) and r0 = 1000 µm (b). 

 
4. Experiments 
 

The developed theoretical models were applied to choose the relevant validation experiments. The setup is 
based on a Q-switched pulsed repetition rate Nd-YAG laser, an optical system for laser beam transportation, an optical 
focusing system, a generator to trigger laser pulses, a pyrometer system and PC software for pyrometer signal 
processing. The laser beam parameters were the following: 1064 nm wavelength, up to 200 W peak power; adjustable 
pulse duration (0.5 - 500 ms) and repetition rate (1 Hz ÷ 10 kHz), beam divergence θ ≈ 30 mrad; laser beam with a top-
hat intensity distribution and diameter D ≡ 2r0 = 2 mm on the tested surface. The laser beam was transported by a 20-

(a) (b) 
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meter optical fiber (silica, 1 mm diameter, numerical aperture N.A.= 0.2). A pulse generator (Princeton, DG535) was 
used to control the applied laser pulses (number, pulse duration, repetition rate). A photodiode was used to register the 
laser power reflected from the surface to provide laser beam and surface reflectivity control. 
 The developed pyrometer system comprises two pyrometers (Kleiber KGAF 740-HS and Kleiber KGAF 274C-
LWL, 500 – 2600 K temperature range, 1.58 – 2.2 µm spectral sensitivity range, time constant t99% = 15 µs), an optical 
lens (focal length F = 61 or F = 41 mm) to image the heated zone of 500 or 700 µm diameter onto the entrances of the 
pyrometer fiber (1.5 m length, 200 µm diameter), and a computer system to process the input data. The pyrometers with 
the “direct” output provide the exit signal (in Volts) proportional to the photon flux. All the data were processed by the 
MATLAB software. The measurements were made on the tokamak graphite tiles with deposited layers (from TEXTOR or 
TORE SUPRA) and with W-layer (≈140 µm tungsten thickness) deposited onto the CFC substrate by a plasma spray. 
Here, only results obtained with TEXTOR samples are presented. 
 
4.1. Laser active pyrometry method  
 

The laser acousto-optical modulator adjustments provided the laser pulses of a nearly rectangular shape for the 
applied repetition rates νL = 2 Hz -1 kHz. Laser pulse duration was τL ≅ (0.5 /νL). Zones B, C, and D (Fig. 2) with a carbon 
deposited layers were under laser heating with νL = 2 - 1000 Hz.  

 
Fig. 2. Measured zones on TEXTOR sample. 

 
The laser power was carefully adjusted to avoid the layer overheating which may affect the initial layer 

properties and results in undesirable modification in surface features. Thus, the applied laser power was P = 12 W for 
zone B (33 ± 13 µm layer thickness), P = 12 W or 16 W for zone C (4 ± 2 µm layer thickness), and P = 8 W for zone D 
(≈10 µm layer thickness, detached), to provide the condition ∆T < 1000 K. The maximal heating temperature and 
modulation amplitude decrease with increasing of the laser repetition rate frequency. The experimental heating 
temperatures (Fig. 11-14) were determined for all the zones under study.  

With the 3-D modelling, it was possible to calculate the heating temperature with a good temporal and spatial 
resolution. In our simulations, the graphite properties for the TEXTOR tile (substrate) were taken as in [2]: density ρs = 
1680 kg/m3, porosity p s = 25 %, mass specific heat C s = 1500 J/(kg K), and  thermal conductivity k s = 60 W/(m K). The 
fitting for the experimental/calculated temperatures for zones B, C, and D was made. For zones B, C, and D, 
respectively, Fig. 3, Fig. 4 and Fig. 5 present the best temperature fitting obtained with the adjusted carbon layer 
properties. The set of the layer parameters corresponding to the best fit of the experimental/simulation results was 
considered as the layer properties. Table 1 gives the obtained results for zones B, C and D and presents the adjusted 
mean carbon layer properties (ρ l , C l , k l , α l , R l ) and the thermal contact coefficient halp determined by active laser 
pyrometry with ≈ 10% accuracy (for a given layer thickness d) for TEXTOR tile as a substrate. 
 

        
 

Fig. 3. Theoretical fit of the heating temperatures for zone B (33±13 µm layer thickness). P = 12 W, νL = 100 Hz. Panel 
(a) presents the results for the 45th laser pulse in the saturation regime for mean temperature. Panel (b) presents the 

profiles of the minimal and maximal heating temperatures for fifty laser pulses on the whole temperature trace. 
 
 
 

10 mm 
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Fig. 4. Theoretical fit of the heating temperatures for zone C (4±2 µm layer thickness). P = 16 W, νL = 100 Hz. Panel (a) 
presents the results for the 45th laser pulse in the saturation regime for mean temperature. Panel (b) presents the profiles 

of the minimal and maximal heating temperatures for fifty laser pulses on the whole temperature trace. 
 
 
 

           
 

Fig. 5. Theoretical fit of the heating temperatures for zone D (≈10 µm layer thickness, detached). P = 8 W, νL = 100 Hz. 
Panel (a) presents the results for the 95th laser pulse in the saturation regime for a mean temperature. Panel (b) presents 

the minimal and maximal heating temperatures for one hundred laser pulses on the whole temperature trace. 
 

Table 1. The adjusted mean properties of the carbon layer deposited on the TEXTOR tile determined by active laser 
pyrometry. The accuracy of the results is mainly determined by the measurement accuracy of the layer thickness d by 

optical microscopy. 
 

 Zone B   Zone C Zone D 
(detached) 

d [µm] 33±13 4±2 10 

ρ l  [kg/m3] 650 1792 450 
C l  [J/(kg K)] 1500 1500 1500 
k l  [W/(m K)] 0.1 10 0.1 
α l [µm-1] 1 2.13 1 

R l 0.7 0.23 0.9  
h alp  [kW/(m2⋅K.)] 3.925 14 0.325 

hph  [kW/(m2⋅K.)] h ∼10 h ∼10-100 0.1 < h < 1.0 
 
 
4.2. Lock-in thermography 
 

Lock-in thermography was applied to determine thermal contact coefficient (hph) by phase shifts measurements 
with different laser repetition rate frequencies. To determine the experimental phase shifts, the temperature evolution 
traces obtained by pyrometer measurements were used. Theoretical phase shifts were simulated with a new model for 
rapid calculations. Both the experimental and theoretical phase shifts versus laser repetition rate frequency for zones B, 
C, and D are presented in Fig. 6, Fig. 7, and Fig 8, respectively. The experimental results are given by points with errors 
bars. The theoretical phase shifts in these figures correspond to the Fourier component with n = 1, that is, to the Fourier 
component on the laser repetition rate frequency νL. The phase shift modelling was made with the adjusted layer 
properties obtained by laser active pyrometry (see Table 1), and layer/surface thermal contact coefficient hph was an 
adjustable (variable) parameter. 
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Fig. 6. Zone B. Simulated phase shifts (a-f) versus the repetition rate laser frequency νL for different h (kW/(m2.K)).       
For (a) h ≤ 0.001, (b) h = 0.01, (c) h = 0.1, (d) h = 1, (e) h = 10, and (f) h ≥ 100. The layer thickness in the simulations is   

d = 33 µm, and the laser beam radius r0 = 1000 µm. P = 12 W. 
 

 
 

Fig. 7. Zone C. Simulated phase shifts (a-f) versus the repetition rate laser frequency νL for different h (kW/(m2⋅K)).      
For (a) h ≤ 0.001, (b) h = 0.01, (c) h = 0.1, (d) h = 1, (e) h = 10, and (f) h ≥ 100. The layer thickness in the simulations is   

d = 4 µm, and the laser beam radius r0 = 1000 µm. P = 12 W and 16 W. 
 

 
 

Fig. 8. Zone D. Simulated phase shifts (a-f) versus the repetition rate laser frequency νL for given h (kW/(m2⋅K)).            
For (a) h ≤ 0.001, (b) h = 0.01, (c) h = 0.1, (d) h = 1, (e) h = 10, and (f) h ≥ 100. The layer thickness in the simulations is   

d = 10 µm, and the laser beam radius r0 = 1000 µm.   P = 8 W. 
 

From Figs. 6-8 for zones B, C, and D, the thermal contact coefficients are hph ≈ 10 kW/(m2 K), hph ≈ 10-100 
kW/(m2⋅K), and hph ≈ 1 kW/(m2⋅K), respectively  (Table 1, last line). From comparison of hph with the thermal contact 
coefficients determined by active laser pyrometry (halp), one may conclude that the results obtained by both methods are 
quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have demonstrated 
their advantage as being much more rapid. 
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5. Conclusions 
 

Active laser pyrometry and lock-in thermography were applied for in situ non-destructive characterization of 
micrometric layers on graphite substrates from European tokamaks [2-8]. The studies were aimed to obtain layer 
characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and 
lock-in thermography. The experimental installation comprised a Nd:YAG pulsed repetition rate lasers (1 Hz - 1 kHz 
repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the 
temperature consecutive measurements in 500 - 2600 K range. The study was aimed to cross-check the layer thermal 
contact coefficients obtained by active laser pyrometry and lock-in thermography. 

Both for active laser pyrometry and lock-in thermography, the layer characterization was provided by the best fit 
of the experimental results and simulations. The experimental results obtained by active laser pyrometry were simulated 
by the developed 3D model for heating temperatures. The experimental phase shifts determined by lock-in thermography 
were simulated by the developed model for rapid phase shift calculations. The layer thermal contact coefficients 
determined by active laser pyrometry (halp) and those by lock-in thermography (hph) were quite comparable. Though 
there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much 
more rapid for determination of thermal contact coefficient for deposited layers of micrometric thickness.  

To improve the lock-in thermography measurements of the phase shifts, the following considerations should be 
taken into account. Careful adjustment of the laser repetition rate is required. The laser pulse energy should not be too 
high to avoid any modifications in the layer properties resulting from the excessive heating of the surface layer. For the 
zones with a poor thermal contact, the rapid increase in the surface temperature may result in the layer surface 
modifications. In this case, it is not evident whether the measured phase shifts are attributed to different thermal contact 
quality or to the resulted layer modifications. 

For surface properties characterization by lock-in thermography or active laser pyrometry, it may be advised to 
use a pyrometer of 330 - 1300 K temperature measurements range, which may provide measurements of a rather low 
temperature modulation of the surface under heating. At the low temperature modulation, the layer properties may be 
regarded as constant, and the phase shifts measurements are not sensitive to the layer properties dependence on a 
heating temperature. In addition, the undesirable surface oxidation may be avoided. 

To decrease laser heating fluence, it may be advised to increase the laser spot diameter on the studied surface. 
For the temperature measurements in this case, the infrared camera rather than the pyrometer should be used. The 
infrared camera may offer the advantage of making the sample surface thermography and phase measurements 
simultaneously for each pixel of the camera. 

Both the methods under discussion may be advised for applications in nuclear industry and art objects. For 
deposited layers on the surface, one may get information both on its mechanical properties (thickness, undersurface 
defects and cracks) and on thermo-physical ones (thermal conductivity and diffusivity, thermal resistance coefficient of 
the surface layer). However, up to now, the potentialities of the methods are restricted to micrometric layers of thickness 
exceeding roughly 1 µm. Applicability of the methods for characterization of very thin (< 1µm) layers requires additional 
studies. 
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