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Abstract  

In this paper, a law similar to that of the Wien’s law, but to determine the optimal wavelengths in a mono-spectral 
and a bi-spectral methods (without the Wien’s approximation, i.e. for a Planck law) used for temperature measurement of 
surfaces exhibiting non-uniform emissivity, and a more general methodology (based on the ordinary least squares method) 
to obtain the optimal wavelengths selection in a multi-spectral method is presented. The goal consists of minimizing the 
standard deviation of the estimated temperature (optimal design experiment). For the multi-spectral method, two cases will 
be treated: optimal global, and optimal constrained (to the spectral range of the detector, for example) wavelengths 
selection are presented. The estimated temperature results obtained by different models taking into account a second-
order polynomial transfer function and including the emissivity variations and for different number of parameters and 
wavelengths are compared. Different selection criteria are presented. These points are treated from theoretical, numerical 
and experimental points of view. 

 
Nomenclature 
  ϕ Flux, 2.W m−  
 C1 Constant Planck's law, W.m2 
 C2 Constant Planck's law, m.K 
 T Temperature, K  or °C 
 Tij Temperature calculated from the wavelengths 

filters ,i jλ λ  

∝   Proportional 

 
Greek symbols 
ε  Emissivity 
λ  Wavelength, m  
χ  Sensitivity 
Indices, exponents and other symbols 
λ  Spectral, or wavelength 
 m Mean  
i,j,k Number of filter 

1. Introduction 

These last years in parallel with industrial development, optical measurement methods were increasingly used 
for measuring space and/or time distributions of temperature in extreme conditions (such as Tokamaks) or for the thermal 
characterization of weakly reflective opaque materials at high temperatures [1]. These methods presents the advantage of 
being weakly intrusive and allow performing remote measurement, which are usually done by infrared cameras, quantum 
detectors, or photomultipliers in the case of measurements at shorter wavelengths [2]. The measurement difficulties are 
numerous, such as taking into account the reflection on the sample, or spatial and temporal variations of the emissivity of 
the material, making it non-uniform over the sample surface, especially at high temperature where significant oxidation 
phenomena can occur. One solution is to make a measurement by the multi-spectral method [2-9], of which a state-of-the-
art has been made by [4, 8]. Even if the idea is interesting, its implementation is tricky because of the difficulty to choose 
the adapted wavelengths λi. Indeed, they must be chosen "close enough" to overcome emissivity variations of the material, 
but not "too close" to obtain an uncertainty on the measured temperature lowest as possible [9].  

After a presentation of analogous Wien’s laws for “optimal” wavelengths selection for mono-spectral and bi-
spectral measurements, the theoretical principle of the multi-spectral methods is presented. Next, several models are 
validated numerically through Monte-Carlo simulations for different spectral emissivity variations, and compared 
experimentally. The facility is presented in section 6, and the considered variations of emissivity used to validate the 
theoretical models for estimating temperature through an inverse technique based on an ordinary least squares method 
are shown in section 5. Two different cost functions ((8) and (10)) will be used to estimate this temperature by inverse 
method: the first uses fluxes ratio and the Wien approximation (7), and the second uses the fluxes (9) (Planck’s law without 
any fluxes ratio).  

2. Analogous Wien’s law for optimal wavelengths selection : mono-spectral method 

Calling ( )f λ  the global spectral transfer function including all unknowns (emissivity ( )ε λ , sample area, quantum 
efficiency…), the flux emitted by an object is defined by the Planck’s law (1) which can take a simpler form (named Wien’s 
approximation) if 2 14400 .T C µmKλ << ≈ : 
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Considering λ  as a parameter, by differentiating the Planck’s law (1) with respect to temperature and equating 
the differential terms to errors, it can be shown that the relative error on the temperature is: 

 
Wien's

approximatio

2

2 2n

1 expT
e ee CT T

T C T C
ϕ ϕλ λ
ϕ λ ϕ

  −   = −       
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Furthermore, if it is assumed that ( )e f kϕ λ =  (with k a constant), find the wavelength that minimizes (2) under 

the Wien’s approximation, leads to: 

 2

2

min 0 0 2400
6

T T Wien R
opt MWo

e e CkT T mK C
T T C Mλ

λ
λ µ

λ λ

     ∂ ∂      ⇒ = ⇒ = ⇔ = ≈ =          ∂ ∂     
  (3) 

Accordingly, (3) shows that under the Wien’s approximation and for the mono-spectral measurements, the 
wavelength that minimizes the relative error on the temperature is defined from an analogous to Wien’s law: 

2400Wien R
opt MWT C mKλ µ= ≈ . Note that, equating the errors to the standard deviation (to the least squares sense), 

minimizing (2) is equivalent to minimize the standard deviation Tσ  of the temperature for a constant standard deviation 

ϕσ  of the flux (cf. section 4).  
It seems legitimate to wish extend this law, but for a flux defined by Planck's law. The equation to solve being 

nonlinear (cf. (2) and (3)), the method consists in search numerically for several temperatures iT  the wavelengths opt
iλ  

that minimize 
iT ie T  (cf. figure 1), then to determine the constant R Planck

MP optC Tλ=  by a least squares method, such as: 

 
2

ˆ ˆargmin 2410.3
R
MP

R
R opt MP Planck R
MP i opt MP

C i i

C
C T C mK

T
λ λ µ
  = − ⇒ = ≈   
∑   (4) 

The residues defined by ( ) 2410.3opt
i i ir T Tλ= −  are plotted in figure 2. Low residue values (cf. figure 2) 

corroborates a good fit of the law ˆ 2410.3Planck R
opt MPT C mKλ µ= ≈  to find the optimal wavelengths for mono-spectral 

measurements (with Planck’s law). 

 
Fig. 1. Minimums of / o

Te T Mλ∝  for 

300 ;1300T K K ∈     (1 curve out of 30). 

 
Fig. 2. Optimal wavelengths obtained numerically and by 

the law ˆPlanck R
opt MPC Tλ =  for 300 ;1300T K K ∈    . The 

maximum residue is of about 5.10-4µm. 

Note that, minimizing (2) is equivalent to maximizing (with respect to λ ) the sensitivity ( ),
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Thus, using the Wien’s approximation, maximizing (5) with respect to λ , leads to (cf. figure 3 for an illustration): 

 
( ) 2
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Fig. 3. Graphical illustration of the sensitivities. 

 Note that, the optimal wavelengths are slightly shifted to the left of the maxima of the Planck’s curves (figure 3) 
and can be interpreted as a compromise between sensitivity and signal over noise ratio (cf. section 4).  

3. The multi-spectral method 

The principle of multi-spectral method is based on the use of multiple wavelengths to obtain the value of different 
physical quantities. Here, we focus our attention on the temperature and on the coefficients involved in modeling the 
variation of the emissivity of an oxidized cast iron sample. Among the many existing methods, two particular methods using 
either direct radiative heat fluxes or their ratios will be briefly presented from a theoretical point of view. Numerical results 
of estimation will allow us to choose the most adapted method for temperature measurement. 

3.1. Principle of Multi-spectral method based on flux ratio and Wien's approximation 

The principle of the measurement method (called TNL.TXY) is the following: Let ( ),
f

i j i j N
λ λ

< ≤
 be couples of two 

wavelengths at which you want to perform our measurements ( fN denotes the number of different wavelengths, in our 
case, Nf = 4). In practice, these wavelengths correspond to monochromatic filters wavelengths. For each pair of 
wavelengths, one can calculate the temperature (7) using the flux ratio expressed from the Wien approximation (1) and a 
model of order 2 (around the mean wavelength mλ ) for describing the global spectral transfer function

 ( )f λ  of the overall 
system (including the emissivity variations) [6, 9]. 

 ( )
( ) ( )
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2
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With: ( ) ( ) ( ) ( )
( )

( )
2

'
2
m

m m m mf f f f
λ λ

λ λ λ λ λ λ
−

′′= + − + , '( ) / ( )m m mX f fλ λ λ= , 2 ''( ) / 2 ( )m m mY f fλ λ λ=  

The objective is to find the values of (T,X,Y) that minimize the following cost function:  

 ( ) ( ) ( ) ( ) ( )
1

2 2 2 2
12 23 34

1
1

, , ( , ) ( , ) ( , ) ( , )
fN

ij
i
j i

S T X Y T T X Y T T X Y T T X Y T T X Y
−

=
= +

= − = − + − + −∑  (8) 

3.2. Principle of Multi-spectral method based on flux 

The previous method is based on the Wien approximation. The estimation model is therefore biased as this will 
be shown in the numerical validation section. This bias can be significant depending on experimental conditions as for 
instance the wavelengths working range. That's the reason why, we present here an unbiased model (called TNL.Tabc) 
based on the estimation of fluxes (left equality of (9)). This model consider a second-order polynomial model for modeling 
the overall spectral transfer function through three unknown parameters (a,b,c) to estimate. In (10), exp

iϕ  represents the 

flux measured at the experimental wavelength iλ .  
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The objective is to find the values of (T,a,b,c) that minimize the following cost function:  

 ( ) ( ) ( ) ( )2 2 2exp exp exp
1 1 4 4

1

, , , ( , , , ) ( , , , ) ........... ( , , , )
fN

i i
i

J T a b c T a b c T a b c T a b cϕ ϕ ϕ ϕ ϕ ϕ
=

= − = − + + −∑  (10) 

As the method used for temperature estimation is based on the minimization of a functional through an Ordinary 
Least Squares method (OLS), the idea we propose in this work is to select optimal wavelengths by minimizing the standard 
deviation of the estimated temperature. In the OLS method, the statistical properties of the parameters (10) are given by 
the variance-covariance matrix, from which the standard deviations 

iβ
σ  of estimated parameters and particularly of the 

temperature Tσ  can be determined. The model (9) being non-linear, we will use the approximate expression of the 

variance-covariance matrix of the Ordinary Least Square method, which is given for a parameter vector ( ), , ,T a b c=β

, under assumptions of an additive noise, non-correlated, identically distributed (zero mean and constant variance), by: 
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(11) 

4. Optimal wavelength selection for temperature measurement 

In this section, firstly we establish analogous Wien’s laws to determine the optimal wavelengths for mono-spectral 
and bi-spectral measurements, then, a general method for multi-spectral measurements is presented. Note that, although 
this method is presented under assumption of a constant standard deviation of the flux for simplification, it can be applied 
for a variable standard deviation. 

4.1. Analogous Wien’s law for optimal wavelengths selection : mono-spectral and bi-spectral methods  

First, note that for the mono-spectral measurements the minimization of the relative error of the temperature can 
be linked to the minimization of the standard deviation of the temperature. Indeed, for mono-spectral measurements (one 
wavelength and one unknown parameter “T” (assumed constant and known emissivity)) from (11) and (6), we have: 

 ( )( )
( )

1 1

1
2

1

2
1min min 2400 .
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,
0 Wien W

T noise opt M
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T m
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  (12) 

Thus, we see from (3), (6) and (12), that there is equivalence between minimizing the relative error on the 
temperature, maximize the flux sensitivity to the temperature, or minimize the standard deviation of the temperature. This 
last observation will allow us to generalize the method for determining the optimal wavelengths for bi-spectral and multi-
spectral measurements. 

For bi-spectral measurements through Wien's approximation but without flux ratio (i.e. two wavelengths and two 
unknown parameters "{T,a}" in (9) and (11) but with Wien's approximation), it is possible to show analytically that the 
optimal wavelengths which minimize the standard deviation of the temperature (11), are defined by two laws (one for each 
wavelength) analogous to the Wien's law, such as: 

 ( )( )
1 2

1
1

1 2 2, 2

min ,
bi Wien R
opt BW

T bi Wien R
opt BW

T C

T Cλ λ

λ
σ λ λ

λ

−

−

 =
=

⇒


  (13) 

As in the case of mono-spectral measurements, it seems legitimate to extend these laws for fluxes defined by 
Planck's law. The equations to minimize being once again non-linear, then the approach will be similar as for (4), we will 
seek numerically the set of pairs of wavelengths ( )1, 2,,

opt opt
i iλ λ  that minimize the standard deviation ( )1 2,iT

σ λ λ  of the 

temperature (calculated from (11) with sensitivitiesX evaluated at ( )0 ,1iT=β ), then we will determine the law constants 

( )1 2ˆ ˆ,R R
BP BPC C  using a least squares method, such that: 

 ( )
1 2

2 2 11 2
11 2

1, 2, 2ˆ ˆ, 2

ˆ ˆ 1830.8 .ˆ ˆ, arg min
4465.8 .R R

BP BP

bi Planck RR R
opt BPR R opt BP opt BP

BP BP i i bi Planck RC C i i i opt BP

T C mKC C
C C

T T T C mK

λ µ
λ λ

λ µ

−

−

        = ≈      = − + −           = ≈     
⇒


∑   (14) 

A graphical representation of wavelengths minimizing standard deviation of the temperature (obtained numerically 
and for the Planck’s law) and those obtained with the laws (14) is given figure 4. 

The residues are not shown, but as in the mono-spectral case, the maximum error is of about 10-4µm. An 
illustration of optimal wavelengths for mono-spectral and bi-spectral measurements is shown in figure 5. 
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Fig. 4. Optimal wavelengths for bi-spectral measurements. 
Comparisons between wavelengths obtained numerically 
and from the laws (14) : ,

,
ˆR kbi Planck

opt k BPC Tλ − = . 

 
Fig. 5. Illustration on Planck’s curves of optimal 
wavelengths for mono-spectral and bi-spectral 

measurements. 

 Note that the optimal wavelengths for bi-spectral measurements satisfy: 

 ( )

min

2
2

2 1 min
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Where, by differentiating the equation (7) and assimilating the differential terms of errors, we can show [6, 9] that 
2

min
2

j i

jT

C
λ λ

λ
λ

>

∆ =  is the minimum distance between two wavelengths to avoid amplification of measurement errors on the 

temperature. 

4.2. Optimal wavelengths selection for multi-spectral measurements 

In this section, the methodology used to determine numerically the optimal wavelengths for bi-spectral 
measurements will be extended to measurements with more than two wavelengths (i.e. for multi-spectral measurements 
with as many wavelengths as parameters to estimate). Given the criterion minλ∆  of minimum distance between two 
wavelengths, for multi-spectral measurements we will use a maximum of four wavelengths (Nf = 4) to remain in the spectral 
range [1.5µm; 5.5µm] of the measuring apparatus (infrared camera). For the same reason, for an emissivity model of order 
less than two, we choose as many wavelengths as unknown parameters to estimate. The determination of the optimal 
wavelengths with or without constraints can be done using a global optimization algorithm such as “Trust-Region”. 
Choosing as nominal parameters vector ( )0 623;1;1;1=β , for an unconstrained estimation the minimization calculus of the 

standard deviation of the temperature gives for 48.9697.10noise Wσ ≈  (about 37.43.10 %−  of the Planck's law maximum, and 

equivalent to the value of the experimental noise):  
- For ( ), , ,T a b c=β , we find: { }2.53;4.70;8.87 ;26.18 µm=opt_globalλ  and 0.07T Kσ ≈  

- For ( ), ,T a b=β , we find: { }2.67 ;5.24 ;12.57 µm=opt_globalλ  and 0.05T Kσ ≈  

- For ( ),T a=β , we find: { }2.94 ;7.17 µm=opt_globalλ  and 0.02T Kσ ≈  

Although this set of values are the best in terms of minimization of the standard deviation of the temperature, 
performing measurements at these different wavelengths is difficult in practice because a detector with a so wide spectral 
range does not exist. For this reason, we decide to choose our wavelengths only in the spectral range of the detector 
[1.5µm; 5.5µm]. If we perform the global optimization with this constraint, the results obtained are: 

- For ( ), , ,T a b c=β , we find: { }2.14 ;3.39;4.76;5.50 µm=opt_cam_spec-rangeλ  and 0.32T Kσ ≈  

- For ( ), ,T a b=β , we find: { }2.43;4.21;5.50 µm=opt_cam_spec-rangeλ  and 0.09T Kσ ≈  

- For ( ),T a=β , we find: { }2.93;5.50 µm=opt_cam_spec-rangeλ  and 0.03T Kσ ≈  

Note that in the global estimation with constraints, the last wavelength is always the upper bound, which means 
that the best wavelength is probably out of the interval. 

Experimentally, we have chosen { }2;2.35;2.85;4 µm=expλ  as wavelengths filters. With these wavelengths, the 

theoretical standard deviation calculated for ( ), , ,T a b c=β  and ( )0 623;1;1;1=β , is 2.55T Kσ ≈ . 
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5. Numerical validation of models for temperature measurement in the infrared wavelength range 

To validate the model, we simulated no noised (cf. Table 1) and thousand noised fluxes (cf. Table 2) through the 
Monte-Carlo method (normal noise exhibiting the same level as standard deviation measured on the experimental 
thermographic images under the same conditions) from four different variations of emissivity (cf. figure 6): constant, linear, 
order 2 and Drude (𝜀𝜀𝜆𝜆 ∝ 𝜆𝜆−1/2 ). We took care that the variations of order 2 and Drude are significant on the IR spectral 
range of the study (and in agreement with the experimental behavior of different materials). The tables below show the 
results for the four filters chosen experimentally. We called Tm, the average temperature of Tij (corresponding to bi-
chromatic measurements) obtained by assuming a constant emissivity (X=Y=0 in (7), or b=c=0 in (9)); the notation TNL 
means that the Temperature is obtained from an "NonLinear least squares" estimation (8) and (10) using the regularized 
algorithm of "Levenberg-Marquardt". TNL.TXY (respectively TNL.TX) means that we use (8) with Nf =4 (resp. Nf =3) with 
the unknown parameters (T,X,Y) (resp. (T,X)). Note that when Nf =3, we take the three shortest wavelengths among the 
four used to carry out the tables, because it can be shown that the results are better for the shortest wavelengths [5, 6, 9]. 
Similarly, TNL.Tabc (respectively TNL.Tab), means that we use (10) and the unknown parameters are (T,a,b,c) (resp. 
(T,a,b)). For TNL.Tab, we will also take the three shorter wavelengths. 

 
Fig. 6. Emissivity variation used for numerical validation 

 

5.1. Analysis of Table 1: Simulations without noise 

Table 1. Monte-Carlo simulations for estimating the temperature (without noise) 
AVERAGE TEMPERATURE OF 1000 ESTIMATES : lambda [m] = {2e-6 ; 2.35e-6 ; 2.85e-6 ; 4e-6} 

Texp = 623 K  ;  Radiance law: Planck 
Noise Emissivity Model T [K] Absolute Error [K] Relative Error [%] Sigma [K] Sigma [%] 

W
ith

ou
t 

Constant 

TNL.TXY (4bands) 622,47 0,53 0,09 - - 
TNL.TX (3bands) 623,16 0,16 0,03 - - 

Tm 622,87 0,13 0,02 - - 
TNL.Tabc (4bands) 623,00 0,00 0,00 - - 
TNL.Tab (3bands) 623,00 0,00 0,00 - - 

Linear 

TNL.TXY (4bands) 622,78 0,22 0,04 - - 
TNL.TX (3bands) 623,10 0,10 0,02 - - 

Tm 651,21 28,21 4,53 - - 
TNL.Tabc (4bands) 623,00 0,00 0,00 - - 
TNL.Tab (3bands) 623,00 0,00 0,00 - - 

Order 2 

TNL.TXY (4bands) 622,72 0,28 0,05 - - 
TNL.TX (3bands) 608,59 14,41 2,31 - - 

Tm 643,53 20,53 3,30 - - 
TNL.Tabc (4bands) 623,00 0,00 0,00 - - 
TNL.Tab (3bands) 608,52 14,48 2,32 - - 

Drude 

TNL.TXY (4bands) 636,58 13,58 2,18 - - 
TNL.TX (3bands) 641,17 18,17 2,92 - - 

Tm 657,58 34,58 5,55 - - 
TNL.Tabc (4bands) 636,91 13,91 2,23 - - 
TNL.Tab (3bands) 641,01 18,01 2,89 - - 

 
The non-null estimation uncertainties obtained with TNL.TXY, TNL.TX and Tm for a constant emissivity shows 

the bias on parameters due to the using of a model based on the Wien approximation (biased model). In particular, the 
value of this bias is Tm = 0.13 K. However, we note that the estimation TNL.TXY (4 bands) gives good results until an 
order 2 on emissivity variation by correcting partially this bias. The high uncertainties obtained in the case of a Drude 
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variation is probably due to the cumulative effect of the biased model used for modeling the emissivity (order 2) and of the 
Wien / Planck approximation. Compared with the results given by TNL.TX (3 bands), TNL.TXY results are better until a 
bias on emissivity model appears (order 2 and Drude). As models TNL.Tabc and TNL.Tab do not use Wien's 
approximation, no bias appears on estimated temperature except for emissivity variation of order 2 for TNL.Tab, and Drude 
for the models TNL.Tabc and TNL.Tab. 

5.2. Analysis of Table 2: Simulations with noise 

Table 2. Monte Carlo simulations for estimating the temperature (with noise) 
AVERAGE TEMPERATURE OF 1000 ESTIMATES : lambda [m] = {2e-6 ; 2.35e-6 ; 2.85e-6 ; 4e-6} 

Texp = 623 K  ;  Radiance law: Planck  ;   Noise : constant  ;  Sigma Noise Average: 0.00743 % 
Noise Emissivity Model T [K] Absolute Error [K] Relative Error [%] Sigma [K] Sigma [%] 

W
ith

 

Constant 

TNL.TXY (4bands) 622,48 0,52 0,08 1,11 0,18 
TNL.TX (3bands) 623,16 0,16 0,03 0,52 0,08 

Tm 622,87 0,13 0,02 0,08 0,01 
TNL.Tabc (4bands) 623,02 0,02 0,00 1,13 0,18 
TNL.Tab (3bands) 623,00 0,00 0,00 0,52 0,08 

Linear 

TNL.TXY (4bands) 622,78 0,22 0,03 0,69 0,11 
TNL.TX (3bands) 623,10 0,10 0,02 0,32 0,05 

Tm 651,21 28,21 4,53 0,07 0,01 
TNL.Tabc (4bands) 623,01 0,01 0,00 0,70 0,11 
TNL.Tab (3bands) 623,00 0,00 0,00 0,32 0,05 

Order 2 

TNL.TXY (4bands) 622,73 0,27 0,04 1,04 0,17 
TNL.TX (3bands) 608,59 14,41 2,31 0,30 0,05 

Tm 643,53 20,53 3,30 0,07 0,01 
TNL.Tabc (4bands) 623,02 0,02 0,00 1,05 0,17 
TNL.Tab (3bands) 608,52 14,48 2,32 0,30 0,05 

Drude 

TNL.TXY (4bands) 636,59 13,59 2,18 0,73 0,12 
TNL.TX (3bands) 641,17 18,17 2,92 0,38 0,06 

Tm 657,58 34,58 5,55 0,07 0,01 
TNL.Tabc (4bands) 636,91 13,91 2,23 0,74 0,12 
TNL.Tab (3bands) 641,01 18,01 2,89 0,38 0,06 

 
Note that the noise is additive to the flux, but not to the temperature according to (7). The noise will thus lead to 

a bias on estimated parameters with TNL.TXY, TNL.TX and Tm models. However, we can see that it is impossible by the 
methods TNL.TXY and TNL.Tabc to accurately estimate the temperature because the problem seems to be ill-posed. This 
observation is confirmed by the best results given by TNL.TX and TNL.Tab in the case of emissivities ranging up to order 
2, which shows that it is possible to regularize the problem by reducing the number of parameters. Nevertheless, it is 
important to note that the standard deviations of the estimations are significant, suggesting that it will be necessary to have 
a lot of points or to use larger integration times if we want to increase the measurement accuracy. From these results, we 
will choose the TNL.Tabc model as estimation model for the experiments. 

6. Experimental results 

6.1. Description of the experimental bench 

The diagram of the facility is shown in figure 7. An oxidized cast iron sample on which “FT 25" is engraved (its 
surface being varied, so it is for the emissivity) is placed in a tube furnace at a temperature of 623K controlled by a PID 
with a great stability (no oscillations in temperature recording due to furnace regulation). The temperature of the sample is 
obtained using a thermocouple placed on its rear face. The spatial radiative flux emitted by the sample is measured through 
a high sensitive Broad-Band InSb infrared matrix camera working in the spectral range [1.5µm; 5.5µm]. Four 
monochromatic filters: { }2;2.35;2.85;4 µm=expλ are mounted in the filters wheel of this camera in order to measure the 

emitting flux coming from the sample at four different wavelengths. The signal is digitized through a 14 bits Analog/Digital 
card. Each pixel is associated to a Digital Level (DL) corresponding to the spectral radiance of a surface area of the sample. 
The camera has previously been calibrated in the temperature range [573K-673K] using a 4''x4'' extended area blackbody.  

http://dx.doi.org/10.21611/qirt.2014.208



 
Fig. 7. Facility for IR measurements 

6.2. Measurement methodology, data processing and results 

Using a tubular furnace, the sample is heated at three different temperatures levels {T1 = 573K, T2 = 623K, T3 = 
673K}. For each temperature, a recording of 1000 images for each filter is performed, taking care before each acquisition 
that the thermal equilibrium was reached. To get free of the reflection through the non-blackbody sample that is not 
negligible at this level of temperature due to presence of the hot furnace walls in this vicinity, we use the average image 
made with 4 filters at 573K and 673K to correct the existing offset between our measurements at these two temperatures 
and the flux that a blackbody at these same temperatures would emit. Calling ( )exp

i jM Tλ  the experimental heat flux 

measured at the wavelengths iλ  and at the temperature jT , and iK  a variable to correct the offset between the measured 

flux and the blackbody flux, we have a set of 8 equations with 8 unknowns (the four couples ( );i iKε ) to solve. The system 

is as follows: 
 ( ) { }exp , 1 ; 4 1 ; 3

i i

o
j i iM T M K i and j

λ λ
ε= + ∀ ∈ ∀ ∈� �� �� �  (16) 

The 8 unknowns ( );i iKε  are estimated by a regularized ordinary least square method (Levenberg-Marquardt). 

Using the iK  (assuming the reflected part of the heat flux as constant in the temperature range 573K-673K), our 
experimental flux can be corrected to get free from the reflection. Finally, the experimental flux is corrected for each pixel 
through the following relation: 
 ( ) ( )exp exp , 1;4 1;3

i i
j j iT M T K i and j

λ λ
ϕ = − ∀ ∈ ∀ ∈� � � �� � � �� � � �  (17) 

The aim is now to estimate using adjusted flux emitted by each pixel, the temperature field of the sample when 
the furnace is at T2=623K. For this, we will find for each pixel the value of temperature T that minimizes the cost function 
(10). Figures 8-11 show the averaged (1000 Images) thermographic images recorded by the camera through the four 
monochromatic filters { }2;2.35;2.85;4 µm=expλ . The inscription "FT25" is indistinguishable at 2μm but appears more and 

more clearly up to 4μm. The result of the temperature estimation by inversion of Planck's law (assuming unit emissivity) is 
given in Figure 12 for the wavelength at 4μm, corresponding to the experimental wavelength closest to the theoretical 
optimal wavelength defined by (4). As expected, we note that this simple estimation assuming a uniform emissivity does 
not correct the emissivity field because the pattern "FT25" is still visible on the calculated temperature field. Moreover, the 
estimation error of temperature is large, experimental temperature is about 623K while the estimated temperature is about 
588K (approximately 6% error or 35K) with a standard deviation of about 0.52K. The figure 13 illustrates the result of the 
estimated temperature by bi-spectral method (i.e. (7) with X=Y=0, or (9) with b=c=0) with { }2;2.35 µm=expλ . The shortest 

wavelengths have been chosen because they are closest, which will facilitate the assumption of constant emissivity. This 
assumption appears to be relatively good, because the estimated temperature is about 516K (approximately 1% error or 
7K) and the standard deviation is about 3.6K. The figure 14 shows the influence of a bias model (no constant emissivity), 
and thus the advantage of choosing wavelengths as close as possible. Indeed, figure 14 represents the estimated 
temperature field (about 596K, with standard deviation of 2.3K) given by the mean of the three bi-spectral temperatures 

ijT : Eq. (7) with 𝑖𝑖 = 1, 𝑗𝑗 ∈ ⟦2; 4⟧, and X=Y=0. We see that the temperature error (about 27K or 4%) is much greater than 
in the bi-spectral case because of the excessive distance between the wavelengths, not favoring the assumption of 
constant emissivity. Figure 15 shows the result of the estimated temperature field (about 625K) given by the TNL.Tabc 
model (minimization of the functional (10)). We note that the pattern has also (as for the bi-spectral methods) totally 
disappeared and that the temperature error is about 2K (0.3%) with a standard deviation of 4K. Note that, we have also 
tried the TNL.Tab model (with 3 or 4 wavelengths) but the best results are given by the model TNL.Tabc. 

Camera

Tubular 
furnace

Sample
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Fig. 8. Flux 2µm 

 
Fig. 9. Flux 2.35µm 

 
Fig. 10. Flux 2.85µm 

 
Fig. 11. Flux 4µm 

 
Fig. 12. Estimated temperature: TCN 4µm  

Fig. 13. Estimated temperature: Tbispectral  

 
Fig. 14. Estimated temperature: Tm (average of Tbispectral) 

 
Fig. 15. Estimated temperature: Tabc 

 

TCN ; λ = [4e-06]
<T> = 588.21K ; std = 0.52K

 

 

20 40 60 80 100 120

10

20

30

40

50

60

70

80

90
585.5

586

586.5

587

587.5

588

588.5

589

Tij ; λ = [2e-06    2.35e-06]
<T> = 616.41K ; std = 3.6K

 

 

20 40 60 80 100 120

10

20

30

40

50

60

70

80

90
605

610

615

620

625

Tij ; λ = [2e-06    2.35e-06    2.85e-06       4e-06]
<T> = 596.36K ; std = 2.3K

 

 

20 40 60 80 100 120

10

20

30

40

50

60

70

80

90
588

590

592

594

596

598

600

602

604

Tabc ; λ = [2e-06    2.35e-06    2.85e-06       4e-06]
<T> = 625.69K ; std = 4K

 

 

20 40 60 80 100 120

10

20

30

40

50

60

70

80

90
615

620

625

630

635

640

http://dx.doi.org/10.21611/qirt.2014.208



7. Conclusion 

Firstly, analogous Wien’s laws for optimal wavelengths selection in the sense of minimizing the relative error or 
the standard deviation of the temperature have been presented for mono-spectral and bi-spectral measurements (for fluxes 
defined from Planck’s law). In addition, the relationship between minimizing the relative error of temperature, minimizing 
the standard deviation of temperature, and maximizing the sensitivity of the flux to the temperature, has been established. 
Then, a general method based on an ordinary least squares method with or without constraints on the spectral range has 
been proposed for multi-spectral measurements. 

Next, it was shown through Monte-Carlo simulations (table 1 and table 2) that the TNL.TXY model is biased due 
to on the one hand to the Wien approximation, and on the other hand, due to the non-additive uncertainty on fluxes that 
lead to a systematic uncertainty on the estimated temperature T. However, the results given by the unbiased model 
TNL.Tabc (9) (using fluxes without Wien’s approximation and without fluxes ratio) and summarized in Table 2 are very 
satisfactory for emissivity variations of order between 0 and 2 (Drude model is a more difficult case). 

To finish, the experimental results obtained using different methods and from the filters available experimentally 
{ }2;2.35;2.85;4 µm=expλ have been compared. The different models compared are the radiance temperature, the bi-

spectral temperature (with 2 or 4 wavelengths), and the TNL.Tabc model. The results obtained with the TNL.Tabc model 
are very encouraging with an uncertainty of about 2K (0.3%) and a standard deviation of 4K.  

To conclude, we have proposed in this work an unbiased multi-spectral method to estimate through an ordinary 
least squares method the temperature of surfaces exhibiting non-uniform emissivity up to a second order variation. 
Analogous Wien’s laws for optimal wavelengths selection for mono-spectral and bi-spectral methods and a new criteria 
based on the minimization of the standard deviation of the estimated temperature and has also been proposed. It allowed 
us to define in an optimal way the different wavelengths to use for the temperature measurement.    
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