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Abstract 

Finite element models simulating the heat transfer in active thermography are studied intensively. Together with 
improved model accuracy, the related complexity and required computational power are increasing. In the agro-food 
sector, the material properties of the inspected objects, and thus the input parameters of heat transfer models, are prone 
to biological variability. In this work, a strategy called ‘Design and Analysis of Computer Experiments’ was applied to 
efficiently obtain the heat transfer output for an arbitrary combination of input parameters without running every single 
simulation. A metamodel was set up, interpolating between the output of a few carefully selected simulations. 

1. Introduction 

In active infrared thermography (AT), a thermal excitation is applied to the inspected object and an infrared 
camera is used to monitor how the surface temperature of the object responds to this excitation as a function of time. By 
creating a transient heat flow, (sub)surface defects associated with deviations in thermo-physical properties will result in 
surface temperature contrasts which can be detected in a non-destructive and contactless way [1,2]. Depending on the 
waveform that is used by the heat source to deliver the excitation energy, several types of AT can be distinguished. The 
two main types are pulsed thermography, in which a heat pulse is applied to the sample surface, and lock-in 
thermography, in which sinusoidal thermal waves are emitted by the excitation source [3]. AT is being studied intensively 
in several domains, such as building diagnostics [4], inspection of automotive and airplane parts [5], medical screening 
[6], inspection of artwork and historical monuments [7], etc. Several defect types can be detected, such as delaminations, 
cracks, voids and foreign material inclusions [3]. In addition to defect detection, active thermography also allows for 
defect quantification (e.g. defect depth, defect diameter) [8]. While most initial studies on AT adopted an empirical 
approach, in the last decade, focus has shifted towards modeling and fully understanding the underlying heat transfer 
processes [9-11]. There are several motivations to model the heat transfer processes occurring during an AT experiment, 
including to verify experimental observations, to optimize the experimental settings to inspect a certain sample, to 
determine a sample’s thermo-physical properties, etc [11]. In general, heat transfer simulations provide a way to reduce 
the workload and costs associated with physical experimentation. AT models described in literature vary in terms of their 
dimension (1D, 2D, 3D), the complexity of the studied geometry and the mechanisms of heat transfer included in the 
model. Moreover, several numerical methods have been described to solve the heat transfer problems, e.g. the Finite 
Element method, the Finite Volume method, etc [10]. Although in many cases computer simulations provide an efficient 
alternative to physical experiments, the computation time required to perform such simulations might become 
considerably high when complex geometries or heat transfer mechanisms (e.g. radiation) are considered.  

In the agro-food sector, the demand for online quality inspection tools is increasing rapidly. In order to be 
eligible for online application, such tools should be contactless, non-destructive and fast. For some applications no 
suitable technique was developed thus far. Because the defects that can be detected using AT in the higher mentioned 
domains are similar to certain important quality characteristics to be monitored in the agro-food sector, the method could 
also be very valuable for this sector. However, few reports were found on AT applications in the agro-food domain [12-
14]. Since false negatives should be reduced to the absolute minimum in food safety and quality inspection, a full 
understanding of the applied AT methodology and the obtained results is crucial. Computer simulations of the involved 
heat transfer processes may provide this understanding. Since food products are complex and prone to biological 
variability, however, models will need to be of sufficient complexity to fully grasp the phenomena occurring during their 
inspection. As stated earlier, increased model complexity entails increased computation times. 

In order to approach these simulations or computer experiments in an efficient way, the concept of ‘Design and 
Analysis of Computer Experiments’ (DACE) was proposed in 1989 by Sacks et al. [15]. The DACE approach comprises 
four main steps. In a first step, the variables that make up the so-called ‘design space’ have to be identified and for each 
of these variables, the range of possible numerical values should be defined. In a second step, the combinations of input 
parameters at which simulations should be performed, the ‘design points’, have to be selected. This selection is typically 
done according to space filling designs that sample the design space evenly, e.g. Latin hypercube designs [16]. In a third 
step, simulations have to be performed at the design points. In a fourth and final step, a Gaussian Process (GP) 
interpolation between the simulation outputs is used to create the metamodel [17]. This interpolation model can then be 
used to obtain the simulation output at any arbitrary combination of input parameters within the design space, without 
actually having to run the computationally intensive simulation. The DACE approach is based on the fact that most 
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computer experiments have a deterministic output, eliminating the need for replication in the design. By avoiding 
replication, a more efficient screening of the design space is obtained with the same number of simulations performed 
[15].  

This study aims at providing an efficient method for heat transfer modeling in AT, based on the DACE 
framework. The approach is combined with a Principal Component Analysis (PCA) of thermal response profiles. PCA 
allows to project the thermal response onto a very limited number of underlying factors. The method was developed and 
validated for a PVC sample with measured thermo-physical properties. In this way, a strong basis for model-based AT in 
agro-food applications was provided. 

2. Experimental set-up 

2.1. Sample 

The DACE strategy was developed for a finite element model of the heat transfer processes occurring in a 
polyvinyl chloride (PVC) sample with flat bottom hole defects. Since 2D models were set up, the defects were created in 
the form of grooves along the entire width of the sample, instead of as circular defects. In this way, the similarity between 
the real and modeled geometry was maximized. Defects with a subsurface depth of 1 mm, 2 mm and 3 mm were 
considered. Details on the sample geometry are provided in figure 1. The thermo-physical properties of the PVC material 
were measured and are displayed in table 1. The thermal conductivity and heat capacity were determined using the 
guarded hot plate method (ASTM standard C177) and a differential adiabatic scanning calorimeter (dASC) (patent no. 
WO/2012/103601), respectively [18, 19].  The surface emissivity was evaluated with the noncontact thermometer method 
as described in ASTM standard E1933-14 [20]. 

  

 

Table 1. Thermo-physical properties of PVC 

Property Value 

Thermal conductivity k 
[W/(mK)] 0.148 (at T=20°C) 

Density ρ [kg/m³] 1415 

Heat capacity Cp 
[J/(kgK)] 842 (at T=20°C) 

Surface emissivity 0.94 
 

Fig. 1. PVC sample geometry (all dimensions are in mm)  

2.2. Pulsed thermography set-up 

The PVC sample described in section 2.1 was placed in a thermally inert sample holder and inspected in 
reflection mode using a cooled FLIR SC7600 with an InSb detector, a spatial resolution of 640x512 pixels and a noise 
equivalent temperature difference (NETD) of <25 mK (FLIR Systems Inc., USA). Two halogen lamps with a maximum 
power of 2500 W (Hedler GmbH, Germany), controlled by a signal generator (edevis GmbH, Germany), were used as 
excitation sources. The lamps were positioned in such a way that maximum uniformity of the excitation was obtained. To 
further improve uniformity, the lamps were equipped with frosted glass diffusers and metal reflectors (Hedler GmbH, 
Germany). The thermal camera was equipped with a long-pass IR filter (Spectrogon Inc., USA) to avoid reflections in the 
thermal images by separating the excitation wavelength range from the wavelength range of the IR sensor.  A pulsed 
thermography experiment was performed in which a 5 s heat pulse was applied and frames were recorded for 120 s at a 
frame rate of 10 Hz. The software package DisplayIMG (edevis GmbH, Germany) was used for synchronization of the 
halogen lamps and the camera and for recording.  

3. Heat transfer modeling 

Three 2D finite element models of the heat transfer occurring during the pulsed thermography experiment 
described in section 2.2 were set up in Comsol Multiphysics® (Comsol Inc., USA). The models differ in their level of 
complexity and consequently in the computation time required to solve them. In a first model, the pulsed excitation was 
considered as a boundary heat flux, and surface-to-ambient radiative cooling and convective cooling boundary conditions 
were set. Convection coefficients were calculated from correlation formulas for external natural convection based on the 
Rayleigh number [21]. In a second model, surface-to-ambient radiation and convection boundary conditions were 
identical to the ones in the first model, yet the excitation was modeled as a prescribed radiosity originating from the front 
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surface of a heat source. Surface-to-surface radiation between PVC sample and heat source was also considered. 
However, since these two models did not provide an accurate approximation of the cooling profile of both sound and 
defective regions of the PVC sample, they are not described in detail. A third, more complex model, is described below 
and was used in further analysis.  

3.1. Geometry and material properties 

Figure 2 illustrates the geometry considered in the most complex model, in which a box of air surrounds the 
PVC sample and a halogen lamp to be able to study convective heat transfer in the area surrounding the sample. The 
material properties shown in table 1 were assigned to the PVC sample, the temperature- and pressure-dependent 
material properties of air (extracted from the Comsol material library) were assigned to the box of air. 

 
Fig. 2. Geometry of most complex model 

3.2. Physics 

3.2.1. Heat transfer  

The governing equation to be solved on the model domain is the conductive heat transfer equation, defined as:  

 𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
+ 𝛻 ∙ (−𝑘𝛻𝑇) = 0  (1) 

with 𝑇 the absolute temperature [𝐾], 𝜌 the density [𝑘𝑔/𝑚³], 𝐶𝑝 the heat capacity at constant pressure [𝐽/(𝑘𝑔 ∙ 𝐾)], 𝑘 the 
thermal conductivity [𝑊/(𝑚 ∙ 𝐾)] and 𝑡 the time [𝑠] [22]. The initial temperature, 𝑇0, was set at 17.28°C, as obtained 
experimentally. A surface-to-ambient radiation boundary condition (Eq. (2), with 𝜀 the surface emissivity, 𝜎 the Stefan-
Boltzmann constant and 𝑇𝑎𝑚𝑏 the ambient temperature) was applied to all boundaries that were not within the view factor 
of other boundaries. A surface-to-surface radiation boundary condition (Eq. (3), with 𝜀 the surface emissivity, 𝐺 the 
irradiation [𝑊 𝑚²⁄ ] and 𝜎 the Stefan-Boltzmann constant) was applied to all boundaries that were within the view factor of 
other boundaries. A prescribed radiosity 𝐽0 [𝑊 𝑚²⁄ ] in the positive normal direction was applied to the front surface of the 
halogen lamp. Since its amplitude was unknown, it was selected to obtain the same temperature at t=20 s at the sound 
region of the sample surface in simulation and experiment. This way, a prescribed radiosity of 8175 W/m² was obtained.  

 −𝑛 ∙ (−𝑘𝛻𝑇) = 𝜀𝜎(𝑇𝑎𝑚𝑏
4 − 𝑇4)       (2) 

 −𝑛 ∙ (−𝑘𝛻𝑇) = 𝜀(𝐺 − 𝜎𝑇4)  (3) 

3.2.2. Non-isothermal flow  

In order to model natural convection in the box of air surrounding the sample, the Navier-Stokes equation for a 
compressible, Newtonian fluid (Eq. (4)) was solved together with the continuity equation (Eq. (5)):  

 𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌(𝑢 ∙ 𝛻)𝑢 = 𝛻 ∙ [−𝑝𝐼 + 𝜇(𝛻𝑢 + (𝛻𝑢)𝑇) −

2

3
𝜇(𝛻 ∙ 𝑢)𝐼] + 𝐹 (4) 

 𝜕𝜌

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑢) = 0  (5) 

with 𝑢 the fluid velocity [𝑚 𝑠⁄ ], 𝑝 the fluid pressure [𝑃𝑎], 𝜌 the fluid density [𝑘𝑔 𝑚³]⁄ , 𝜇 the fluid dynamic viscosity [𝑃𝑎 ∙ 𝑠] 
and 𝐹 the external forces applied to the fluid [23].    
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Equation (6) governs the heat transfer in the air box:  

 𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
+ 𝛻 ∙ (−𝑘𝛻𝑇) +  𝜌𝐶𝑝𝑢 ∙ 𝛻𝑇 = 𝑄  (6) 

with 𝜌, 𝐶𝑝 and 𝑘 the density [𝑘𝑔 𝑚³]⁄ , heat capacity at constant pressure [𝐽/(𝑘𝑔 ∙ 𝐾)] and thermal conductivity [𝑊/(𝑚 ∙

𝐾)] of the fluid, 𝑇 the absolute temperature [𝐾] and 𝑢 the fluid velocity [𝑚/𝑠].  

The initial fluid velocity was set to be zero in both x- and y-direction and the air initially was at atmospheric 
pressure. A no-slip boundary condition was applied to the PVC sample and halogen lamp boundaries. The outer 
boundaries of the air box were assigned as being open boundaries and a gravity term in the y-direction was applied to 
the air-domain.  

3.3. Mesh and study steps 

The PVC sample was meshed using a mapped mesh, with a resolution of 4 elements per mm of thickness (x-
direction). Halogen lamp and air box were meshed using a triangular mesh. The mesh had a total number of elements of 
106 357. The study was solved in two time-dependent steps. In a first step (0-5 s), a prescribed radiosity was originating 
from the halogen lamp surface. In the second step (5.1-120 s), this prescribed radiosity was enabled. A time-step of 0.1 s 
was used in both steps. The computation time for a single simulation was 1828 s using a 3.40 GHz processor. 

4. Design and Analysis of Computer Experiments  

The Latin hypercube design, Principal Component Analysis and Gaussian process modeling were performed in 
JMP Pro 12 (SAS Institute Inc., USA). Heat transfer simulations were performed in Comsol Multiphysics® through the 
LiveLinkTM for Matlab® (The Mathworks Inc., USA). The comparison of temperature-time profiles was performed in 
Matlab®. 

4.1. Design space 

The material properties of PVC were used as input parameters in the interpolation model. Since 𝐶𝑝 and 𝜌 
always occur as a product in the heat transfer equation, the volumetric heat capacity 𝜌𝐶𝑝 was considered as a single 
variable. The limits of the design space are shown in table 2. For each material property, a range of values was 
considered that contains the reference values.  

4.2. Space filling design  

A maximin space filling Latin hypercube design of 30 runs (=unique combinations of the input parameters) was 
created and is illustrated in figure 3. This type of design maximizes the minimum distance between points in the design 
space, while maintaining an even spacing between factor levels [16]. The number of runs was selected based on the rule 
of thumb to use 10 times the number of input parameters. Since the results of computer experiments are deterministic, 
no replications were included in the design [17].  

Table 2. Reference value and limits of the design space for each 
of the input parameters 

 

 

Property Reference Range of values 

Thermal conductivity 
k [𝑊/(𝑚𝐾)] 0.148 0.1-0.2 

Volumetric heat 
capacity 

𝜌𝐶𝑝  [𝐽 (𝑚3 ∙ 𝐾)⁄ ] 
1 191 430 834 002-1 548 859 

Surface emissivity 0.94 0.7-1 

 

Fig. 3. Latin hypercube design of 30 runs 
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4.3. Defining the model response 

At each of the combinations of input parameters defined by the design points in the space filling design, a heat 
transfer simulation was performed and the temperature-time profile for the sound region was extracted. Based on the 
thus obtained dataset of 30 temperature-time profiles, a Principal Component Analysis (PCA) was performed.  

PCA is a multivariate data analysis technique that allows to reduce a data set’s dimensionality. It transforms a 
large set of correlated variables 𝑋 to a smaller set of uncorrelated principal components (PC’s) while still describing most 
of the variation in the data. The model structure for PCA is given by (Eq. 7): 

 𝑋 = 𝑇𝑃′ + 𝐸  (7) 

with 𝑋 the mean-centered original data set, 𝑇 the scores matrix, 𝑃’ the transposed loadings matrix and 𝐸 the noise or 
undescribed variability in the data. The scores matrix 𝑇 contains the A most dominant PC’s of 𝑋. The PC’s are 

independent linear combinations of all elements in 𝑋. They correspond to the directions of the data in which the variance 
is largest and PC’s are orthogonal to each other. The PC’s are ordered with respect to the amount of variation in the 
original variables they explain. The number of components A is selected based on the desired amount of variation in the 
data to describe. The loadings matrix 𝑃’ provides information on how the variables in 𝑇 relate to the original data in 𝑋 [24, 
25].  

In this study, the scores of the principal components describing the larger part of the variability in the 
temperature-time profiles were used as responses in the DACE model. A Gaussian process model was built for each of 
the responses, i.e. for each of the principal component scores included in the PCA model.   

4.4. Gaussian process modeling and validation 

After performing heat transfer simulations at the design points defined in section 4.2 and obtaining the values of 
the responses (section 4.3) at each of these design points, a Gaussian process (GP) model was set up for each 
response. This model interpolates between the values of that response at the design points and predicts this value at 
every possible combination of input parameters within the limits of the design space.  

GP models interpolate the provided data perfectly, i.e. no error is assumed at the design points. The 
deterministic responses are considered as the realization of a random stochastic, multivariate normal process and are 
represented as 𝑦(𝑥), an 𝑛 x 1 data vector with 𝑛 x 1 mean 𝜇1𝑛 and a covariance matrix defined as:  

 𝑉𝑎𝑟(𝑦) = 𝜎²𝑅(𝑋, 𝜃)  (8) 

in which a Gaussian 𝑛 x 𝑛 correlation matrix 𝑅(𝑋, 𝜃) is used and is expressed as follows:  

 𝑅𝑖𝑗(𝑋, 𝜃) = 𝑒𝑥𝑝 (− ∑ 𝜃𝑘(𝑥𝑖𝑘 − 𝑥𝑗𝑘)²)𝑘   (9) 

wherein 𝜃𝑘 ≥ 0 describes the correlation across the range of factor 𝑘 and gives information on the flatness or bumpiness 
of the fitted surface in the 𝑘𝑡ℎ direction. A maximum likelihood estimation of 𝜇, 𝜎 and 𝜃 is performed and predicted values 
for the responses 𝑦(𝑥) are calculated within the design space [17]. A more detailed description of the GP interpolation 
model can be found in [17].  

 Since an inherent characteristic of GP models is that the prediction error increases with increasing distance 
from the design points, we can state that when the model predicts the principal component scores well at points that are 
at maximum distance from the design points, the model performance is acceptable along the entire design space. 
According to this reasoning, a space filling augmentation of the original LHS design with 10 extra design points was 
performed and the GP model was validated at these additional points. The design augmentation was done using the fast 
flexible filling method with the maximum projection (MaxPro) criterion. The MaxPro criterion maximizes the product of the 
distances between design points while involving all factors [26]. The temperature-time profiles of the sound region were 
determined performing FEM simulations at the augmented design points and compared to the temperature-time profiles 
reconstructed based on the PC1 and PC2 scores predicted by the GP model for these points. The goodness of fit of FEM 
simulated and reconstructed profiles was evaluated by calculating the sum of squared error (SSE) between them. These 
SSE-values were compared relative to the SSE calculated between each FEM simulated profile and the mean FEM 
simulated profile to give a better appreciation of the model accuracy. 
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5. Results and discussion 

5.1. Reference versus simulated temperature-time profiles 

Reference profiles of temperature versus time for sound and defective regions were obtained by averaging 
profiles of three repeated measurements and of a selection of pixels for each region (168 pixels for each of the defects 
and 6924 pixels for the sound region). The resulting temperature-time profiles are shown in figure 4 (left). Temperature-
time profiles obtained from finite element simulations are shown in figure 4 (right). Although there is a clear overshoot in 
the maximum temperature for the simulated profiles, the thermal decay shows a similar behaviour in the experiments and 
the simulations. The overshoot is presumably to be attributed to the dynamics of the thermal camera. 

 
Fig. 4. Experimentally obtained (left) and simulated (right) temperature-time profiles for sound and defective regions  

5.2. Design and Analysis of Computer Experiments 

5.2.1. Principal Component Analysis  

Principal Component Analysis was performed on the 30 mean-centered temperature-time profiles obtained by 
performing FEM simulations at the design points. In figure 5 (left) a biplot of PC1 versus PC2 is shown for this PCA 
model. The variation in the scores (black dots) is largest along the direction of PC1. The positioning of the loadings (red 
arrows) indicates that the variables (temperature values at 1200 time steps within the temperature-time profiles) are 
highly correlated. Figure 5 (right) shows the loadings of PC1 and PC2 as a function of time. The loadings plot for the first 
PC has a similar shape as the temperature-time profiles and provides information on the amplitude of the profiles. Only 
the two first principal components (PC1 and PC2) were retained in the model, since together they explain 99.994% of the 
variance in the dataset. These two principal components were used as responses in the DACE analysis. 

 
 

Fig. 5. Biplot of PC1 versus PC2 of the PCA model (left). Black dots and red arrows represent scores and loadings, 
respectively. Loadings versus time for PC1 and PC2 (right).  
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5.2.2. GP model and validation 

For each of the responses, being the scores on PC1 and the scores on PC2, a Gaussian process model was 
developed. In figure 6, the actual scores on PC1 (left) and PC2 (right) are shown versus the jackknife predicted values of 
those scores. How well these points lie along the 45 degree diagonal line gives an indication of the goodness-of-fit of the 
Gaussian process models. An R²-value of 0.9999 and 0.9912 was found for the scores on PC1 and PC2, respectively, 
indicating the GP models provide a good prediction of the PC1 and PC2 scores. A graphical representation of the GP 
interpolation models is given in figures 7 and 8, for PC1 scores and PC2 scores respectively. These surface profiles 
illustrate how the response changes as a function of the input parameters 𝑘, 𝜌𝐶𝑝 and 𝜀.  

 
Fig. 6. Actual by predicted PC score plots for the Gaussian process model for PC1 (left) and PC2 (right). The R²-value 

for a y=x fit is given.  

   
Fig. 7. Graphical representation of the Gaussian process interpolation model for response Score PC1. Black dots 

indicate the design points. The model is shown for input parameters k and 𝜌𝐶𝑝 (left), k and emissivity (center) and 𝜌𝐶𝑝 

and emissivity (right). 

   
Fig. 8. Graphical representation of the Gaussian process interpolation model for response Score PC2.  

Black dots indicate the design points. The model is shown for input parameters k and 𝜌𝐶𝑝 (left), k and emissivity (center) 

and 𝜌𝐶𝑝 and emissivity (right). 
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As mentioned in section 4.4, a space filling design augmentation was performed, adding 10 points to the original 
Latin hypercube design. These additional design points are indicated in figure 9 (left) in green and red. For all of these 
points, two temperature-time profiles were obtained: a temperature-time profile obtained from a FEM simulation and a 
temperature-time profile reconstructed from the PC1 and PC2 scores predicted by the GP models. An example of an 
overlay of both temperature-time profiles is provided in figure 9 (right) for the setting indicated by the red dot. In table 3, 
the values of the input parameters of the 10 validation points are provided, combined with the SSE of the simulated 
versus reconstructed temperature-time profiles for each point. In order to interpret this SSE value, the SSE values of the 
simulated profiles compared with the mean simulated profile are also provided. These values indicate that the error 
introduced in the profiles by reconstructing them from PC1 and PC2 scores obtained from GP model predictions is very 
limited compared to the overall variation in the temperature-time profiles within the design space. 

 

 

Fig. 9. Left: Space filling design after design augmentation. The green and red dots represent the 10 augmented points. 
Right: The model validation is illustrated for the combination of material parameters indicated by the red dot.  

Table 3. Values of the input parameters at the augmented design points (columns 1-3), SSE of FEM simulated profiles 
versus profiles reconstructed based on the GP predicted PC1 and PC2 scores (column 4) and SSE of FEM simulated 

profiles versus mean FEM simulated profile (column 5). 

 

Thermal 
conductivity k 

[𝑾/(𝒎𝑲)] 

Volumetric heat 
capacity 

𝝆𝑪𝒑  [𝑱 (𝒎𝟑 ∙ 𝑲)⁄ ] 
Surface emissivity 

SSE simulated 
versus 

reconstructed 

SSE simulated 
versus mean 

simulated 

0.194 1 534 239.112 0.994 0.006 23.845 
0.197 855 071.271 0.707 0.026 59.093 
0.113 1 144 508.517 0.736 0.004 0.115 
0.164 840 202.186 0.779 0.005 2.896 
0.184 941 962.334 0.794 0.003 8.995 
0.149 1 413 869.194 0.704 0.003 160.846 
0.181 1 382 006.451 0.777 0.002 143.774 
0.143 1 283 711.307 0.747 0.002 52.632 
0.108 1 064 079.767 0.841 0.006 121.105 
0.124 916 200.262 0.767 0.012 36.402 
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5.3. Discussion 

In this study, an efficient approach towards heat transfer modeling of active thermography based on the DACE 
framework was proposed. This approach was developed especially for deterministic computer experiments, avoiding the 
need for replications in the design. This way, a more efficient sampling of the design space was possible, using a Latin 
hypercube design. A Gaussian process model was developed to interpolate between the FEM simulations performed at 
the design points. Since Gaussian process models have been developed for predicting a single output variable and since 
the responses of heat transfer simulations of active thermography are temperature profiles as a function of time, it was 
necessary to ‘summarize’ the profiles in a limited number of parameters. A Principal Component Analysis was used for 
this purpose and the temperature-time profiles were represented by two principal components. As shown in figure 9 and 
table 3, the Gaussian process models were able to predict PC1 and PC2 scores that resulted in reconstructed 
temperature-time profiles in accordance with FEM simulation results. The Gaussian process models can thus be used to 
obtain temperature-time profiles at any arbitrary combination of input parameters within the limits of the design space, 
without having the need to run time-consuming FEM simulations. Since the entire profile is obtained as a response of the 
Gaussian process model, further analysis towards e.g. defect detection and quantification is possible.  

To illustrate the approach, thermo-physical properties of the studied PVC sample were used as input 
parameters in the GP models. Depending on the application, it can be interesting to study other input parameters related 
to e.g. sample/defect geometry, experimental settings (amplitude, frequency, …)  etc. An inverse approach, namely 
determining the thermo-physical properties based on a measured temperature-time profile, might also be of interest. 
However, this requires that there exists a unique solution (=unique combination of thermo-physical properties) resulting 
in a specific temperature-time profile.  

The DACE approach was tested for a FEM model of the heat transfer in a PVC plate with a relatively simple 
geometry. FEM models of heat transfer are expected to be even more complex, and thus more computationally 
intensive, when applying them to agro-food products, which are inherently complex and prone to biological variability. 
That is why the DACE approach is particularly, but not exclusively, of interest for active thermography research in this 
sector.   

6. Conclusion 

In this study, a finite element model was developed to model the heat transfer processes occurring in a PVC 
sample during a pulsed thermography inspection. A model including a simulation of the natural convection in the air 
surrounding the sample was proposed. Although there is an overshoot in the maximum temperature predicted by the 
model, it describes the cooling profile of sound regions and 1 mm, 2 mm and 3 mm deep defects well. Since this finite 
element model was computationally intensive to solve (±30 minutes on a 3.40 GHz processor), an efficient way to 
approach the model was proposed. Finite element simulations were performed at a limited number of well-chosen 
combinations of thermal conductivity-, volumetric heat capacity- and emissivity values. A Principal Component Analysis 
was performed on the resulting temperature-time responses of the sound regions and two principal components (PC1 
and PC2) were selected to describe the variation in the profiles. Two Gaussian process models were built, interpolating 
between the responses of the well-chosen simulations and predicting the values of respectively PC1 and PC2 for every 
arbitrary combination of material properties within the limits of the design space. The Gaussian process models were 
validated at 10 space filling points that were added to the original design. Low sum of squared error values were 
obtained between temperature profiles obtained from finite element simulations performed at the validation points and 
temperature profiles reconstructed based on PC scores predicted by the Gaussian process model at those points. The 
proposed approach is particularly, yet not exclusively, of interest for active thermography research in the agro-food 
sector, since agro-food products are inherently complex and prone to biological variability and heat transfer models for 
these products are expected to be of high complexity.  
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