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Abstract  

The aim of this paper is to demonstrate the application of reflective diffraction grating and MWIR thermal 
camera for identification of gas and estimation of its concentration. For this purpose a special rig was created with air-
tight tube that was filled with different mixtures of carbon monoxide, carbon dioxide and nitrogen. Thanks to infrared 
windows at both sides of this tube, the radiation from blackbody could pass through it and diffract at the reflective 
diffraction grating to finally reach the camera. After spectral calibration this rig may be used to identify gas in a tube, 
because  different gases have different absorption bands. Measuring signal in the absorption band one can estimate the 
concentration of gas in a tube. 

1. Introduction 

Energy of infrared radiation is sufficient to cause vibrations or rotations of molecules of some gases. Therefore 
infrared absorption in gases is dependent on its molecular structure and the existence or lack of dipole moment. In case 
of permanent dipole moment, it is possible to cause rotations. On the other hand, gases with diatomic molecules as O2, 
H2 or N2 (with zero dipole moment) are transparent to infrared radiation [1]. 

For linear and nonlinear molecules the number of vibrational modes is different, equal to respectively 3N-5 and  
3N-6 (where N is the number of atoms). Hence, for example, a CO2 molecule containing 3 atoms will have 3 x 3 - 5 = 4 
fundamental vibrational modes. The four vibrational modes of CO2 molecule are presented in fig. 1. A carbon dioxide 
molecule can be stretched (symmetrically (a) or asymmetrically (a)) or bent in two different planes ((c) or (d)) [1]. 

In the (a) vibrational mode both carbon dioxide C=O bonds are stretched and contracted symmetrically, 
whereas in the (b) mode they are stretched and contracted asymmetrically. The asymmetric (b) stretching is infrared 
active, because it is leading to dipole moment changes. This particular vibrational mode is associated with 4.26 µm 
radiation wavelength and is the strongest CO2 IR absorption band. The symmetric (a) vibration mode is not infrared 
active, as it is not leading to dipole moment changes. The two equal-energy bending vibrational modes in carbon dioxide 
((c) and (d) in fig. 1) are identical, except that the first one is occurring in the paper plane and the second one is out of 
the plane [1]. 

 
Fig. 1. CO2 molecule vibrational modes: only b-c-d are leading to infrared radiation absorption [1] 

 
Because infrared radiation is absorbed in narrow spectral bands by some gases, hyperspectral imaging may be 

used to measure the wavelengths being absorbed by an unknown gas. Its identification requires the knowledge of 
theoretical absorption bands for different gases to correlate it with measurement results. This way the authors managed 
to identify carbon monoxide and carbon dioxide in a measurement tube – the experimental rig is described in the 
following paragraph. 
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2. Measurement rig 

 
The authors elaborated the test rig shown in fig. 1 where reflective diffraction grating is applied to provide 

hyperspectral imaging with the thermal camera. The idea of such a system and formulas for angle calculation are 
presented in  [1]. The radiation diffracted on the grating comes from the blackbody model and passes through the slit and 
the measurement tube with unknown gas mixture. This is possible thanks to ZnSe  windows (transparent for infrared 
radiation) at both tube ends. The camera acquires the image of the vertical slit that is diffracted horizontally according to 
the wavelength. Because the blackbody has continuous emission spectra, the whole image should be bright. If the gas is 
present in the tube, and it absorbs infrared radiation at certain wavelengths, one will see it as dark absorption vertical 
lines (or bands) [2]. 

 
 

 
 

 
 

Fig. 2. The measurement test rig 

 
2.1. Spectral calibration 

 
There are two calibrations required in such a system. The first one is a spectral calibration, which is necessary 

when one wants to know the wavelengths corresponding to different image horizontal positions. This calibration may be 
carried out by filling the tube with absorption medium exhibiting known spectral transmission. There are reference 
databases with this transmission data, e.g. [3]. In case of this paper the spectral calibration was performed with carbon 
monoxide and carbon dioxide - the recorded transmission spectrum of mixture containing 18.8% CO, 19%CO2 and 
62.2% N is shown in fig. 2a. For the purpose of clear visualization, however, it is worth subtracting this spectrum from the 
one shown in fig. 2b, which is recorded for pure nitrogen in the tube. In result, the differential spectrum is obtained, as 
shown in fig. 2c. There are clearly visible two absorption bands, what is also demonstrated in fig. 2d, where vertically 
averaged horizontal cross-section of fig. 2c is plotted with the red line. Knowing theoretical absorption bands of these 
gases, one can introduce wavelength scale, as shown in fig. 2d, so that theoretical and practical curves match. For 
comparison, in fig. 2d there is also a spectrum shown with blue color for mixture of 19.8% CO and 80.2% N. 
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Fig. 3. Transmission spectra of (a) mixture containing 18.8% CO, 19%CO2 and 62.2% N,  
(b) pure nitrogen, (c) difference (a) – (b), (d) vertically averaged cross-section of (c) 

 
2.2 Calibration for gas concentration 

 
The second calibration required in the described system enables gas concentration measurement. Having gas 

input and output mounted at both ends of the tube it is possible to fill it with certain gas mixture, carry on infrared 
measurement and later on direct this gas mixture to reference measurement apparatus (not shown in fig. 1). This way 
the differential infrared measurement (expressed in differential digital units) may be correlated with reference apparatus 
measurement to provide infrared system calibration for gas concentration measurement. 

During the calibration process there were nine differential spectra recorded for chosen concentrations of carbon 
monoxide mixed with nitrogen. Examples of these are shown in fig. 4. Although it may seem almost identical, the 
difference is revealed by looking at the scale (expressed in differential digital units) – with higher concentration the values 
are lower. This is because the increase of gas concentration causes the infrared transmission factor to decrease, 
according to the Beer’s law [4]. 

 

 
   (a)                 (b) 

 
   (c)                 (d) 

 
Fig. 4. Exemplary carbon monoxide transmission spectra -  

mixtures of nitrogen with (a) 3.4%, (b) 10.4%, (c) 30%, (d) 75% carbon monoxide content 

 Having recorded above mentioned nine spectra, it was possible to plot vertically averaged horizontal cross-
section for each of it – fig. 5. As expected, increasing concentration of carbon monoxide caused higher absorbance. Due 
to relatively low spectral resolution the peak at 4.67 µm is not going to zero level, as it could be expected basing on 
theoretical transmission data for this gas [3]. So the differential values at these peaks for all nine spectra were measured 
and plotted in fig. 6. 

(a) 

(b) 

(c) 

(d) 
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Fig. 5. Transmission spectra for mixtures of nitrogen with given carbon monoxide content 

To calculate the calibration curve it is necessary to apply curve fitting. The Beer-Lambert law (also known as 
Bouguer law) given by (1) seems to be the most appropriate model because it describes the transmission factor versus 
path length and absorption coefficient. Considering the measurement values, however, it is necessary to add another 
offset coefficient to this equation, as given by (2), to enable curve fitting with measured differential data. 

  LaeII  0  (1) 

  beII La  

0  (2) 

where: 
I  –  intensity of radiation after passing the tube 
I0  –  initial intensity of radiation before entering the tube 
a  –  absorption coefficient of the gas inside tube, which is linearly dependent on its concentration 
L  –  length of the tube 
b – offset value required for curve fitting with measured differential data 
 

 During the curve fitting process, the best matching values of I0 = 190.14, L=0.055  and b=196.32  were found, 
enabling us to plot the calibration curve in fig. 6 using equation (2). As it may be observed, this calibration curve is very 
close to real measurement. It is confirmed by the correlation coefficient value equal to 0.995 and standard error of 8.026. 
Using the found values, one may estimate the concentration of gas in a tube by applying the equation (3), which is 
derived from (2). 
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 What is important, it is possible to calculate calibration curves for different lengths of the tube, using equation 
(2). Let us check this dependence for tube lengths equal to 25 cm, 50 cm (original size), 100 cm and 200 cm – the 
results are shown in fig. 7.  
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Fig. 6. Theoretical and measured calibration curves for carbon monoxide concentration measurement 

 

Basing on fig. 7 it may be observed that the sensitivity of a system and its measurement range are interrelated. 
Increasing the tube length causes higher sensitivity but saturation will occur at lower gas concentration thus limiting the 
measurement range. In case of the particular system discussed in this paper, the tube length was equal to 50 cm. It 
seems the best compromise between the sensitivity and measurement range. However when one needs to measure 
high concentrations (above 50% CO) the tube length may be twice (or even more) shorter to provide adequate 
sensitivity. On the other hand, when high sensitivity is required to measure low CO concentrations (below 10%) the tube 
should be about four times longer. 

 

 

Fig. 7. Theoretical calibration curves for carbon monoxide concentration measurement for different tube lengths 
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3.  Conclusions 

Broadband thermal camera may be used for hyperspectral measurements thanks to a diffraction grating. There 
is also a slit and radiation source necessary. The authors demonstrated the application of such a system to identification 
of gases in a tube and measuring its concentrations. It requires two initial calibrations. The first one is for wavelength 
versus horizontal pixel number and the second one is for gas concentration versus measured differential signal. In case 
of this paper the first calibration was done with carbon monoxide and dioxide while the second one only for carbon 
monoxide. Measurements results are in good agreement with Beer’s law. The sensitivity of this system may be controlled 
by changing the gas tube length. There is also another important advantage of the proposed solution – it may work in 
real time without any need for scanning, what is often found in many hyperspectral solutions. 

If the gases in a tube are known and there is no need to identify it, this system may be simplified to non-
dispersive apparatus based on two (or more, depending on number of gases) infrared detectors (without thermal 
camera) – such solutions are described in literature, e.g. [5]. More information about optical gas sensing may be found in 
e.g. [6]. 
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