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Abstract

The aim of this research was to develop a local thermal model of human skin including thermoregulation effects. It
was shown that the thermoregulation is associated with the negative thermal feedback in an alive organism. In this paper
we present the experimental and modelling results of temperature recovery after weak and deep thermal provocation.
The results of the research confirm that the thermal feedback corresponds to the variation of perfusion coefficient in the

well-known, frequently used Pennes thermal model of a tissue.
1. Introduction

Thermoregulation in the alive tissues is an interesting scientific problem, known for years which can be used in
medical practice [10,11,12,13]. Due to the strong dependence between the thermoregulation and some pathologies of a
tissue, modelling of thermoregulation together with thermal measurements using thermography can be applied for
developing new screening protocols [14]. Thermoregulation and its modelling are very actual topic in medical and
technical research [1-13,16]. In most of publications, the problem of thermoregulation is treated globally, for the whole
human body to estimate the mean body temperature and the thermal comfort [13]. The thermoregulation in a tissue has
to take into account both the environmental (external) and internal tissue parameters [1,2,3,12]. Mathematically, it is a
complex problem which includes shivering, sweating and vasomotion (vasoconstriction and vasodilatation) [11,13]. In
many cases it was simplified and successfully verified by the experiments [10,13]. One of the most popular and widely
accepted reference thermoregulation model of human body uses the Universal Thermal Climate Index (UTCI) to predict
the body core and local skin temperature in different environmental conditions [10]. Most of the thermoregulatory models
are based on multi-node structures [1,2,12,13]. Originally the models consisted of few hundreds nodes and they were
successfully simplified to dozens ones, including head, face, neck, thorax, abdomen, shoulders and extremities: arms,
hands, legs and feet. Each organ is modelled by cylindrical or spherical multilayer structure [13]. The convection and
radiation heat transfer were applied for heat balance of a body both for indoor and outdoor ambient conditions [2]. An
interesting assumption of Fiala’s model is that the long wavelength radiation models the cooling, while the short
wavelength is applied for heating [2,3,13].

In this paper we contributed to the local thermoregulatory modelling for a skin tissue. By applying weak and
deep thermmal stresses, one confirmed that thermoregulation in a skin tissue can be explained as linear (in the first

approximation) and nonlinear thermal feedback (for more advanced analysis).
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2. A new method of thermoregulation modelling in a tissue

At the beginning of this research it was assumed that thermoregulation and perfusion are correlated with each other.
The simple basic scenario to induce the thermoregulation and in consequence to change the blood flow, is the heating or
cooling a skin tissue with different strength. The body reaction seems to be similar to a close loop feedback system
(Thermoregulation Feedback Model — TFM) as it is shown in fig. 1. It assumes that a tissue is mathematically described
by its thermal impedance Zn [15,17]. Thermal impedance can be presented in different forms, e.g.: in Laplace domain by
the Nyquist plot and as R-C Foster or Cauer networks [17]. It has been already proven, that thermal impedance of a
tissue varies for different power excitations [16]. Changing the excitation of a tissue from “weak” to “deep’ should result in

varying the value of the feedback coefficient g in the proposed model —fig. 1.
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Fig. 1: Concept of Thermoregulation Feedback Model (TFM) of a tissue

The goal of the research was to verify the hypothesis that the feedback coefficient g correlates with the perfusion
coefficient of the Pennes model, frequently used in thermal investigations of biomedical objects. The perfusion coefficient
was estimated by previously developed method using multilayer thermal modelling of a tissue based on the Pennes
equation in frequency domain [14,15].

In order to estimate the feedback coefficient p, an optimisation algorithm was proposed - fig. 2. Two sets of
experimental data (temperature vs. time) from weak and deep provocations were transformed to the discrete time
constant distribution using Thermal Object Identification — TOl methodology [17]. Next, the model from fig. 1 was trimmed
by changing g to get the impedance of deep cooling Zindeep assuming that the thermal impedance of the weak cooling
experiment Zinweak is in the main path of the system in fig. 1. As the result, one gets the estimated feedback coefficient j.
At last, the feedback coefficient  is compared with perfusion coefficient from the Pennes model of the skin previously

fitted to the experimental data. [14,15].
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3. Thermmographic measurements

The healthy subject (a volunteer) agreed for cooling down the small area of the skin on the back using 2 metal
blocks. The metal blocks were cooled down to 2 different temperatures (5 and -20°C). The blocks were attached to the
skin for about 5 s. — fig. 3. Immediately after removing the cooling devices, temperature rise was measured and recorded
by a quantum photon IR camera. The camera parameters were: NETD = 15 mK at the frame rate fam = 50 Hz. The
correction of the patient’s movement was necessary to use before the further analysis.

Fig. 3: Two regions of the skin on the back of the healthy volunteer, cooled down for 5 s by cold metal blocks in

different initial temperature, left -20°C (deep cooling), right +5°C (weak cooling)
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a) b)
Fig. 4: Temperature rise of the skin after removing the coolant for a) weak and b) deep cooling

Temperature recovery after patient’s body movement is shown in fig.4. Temperature was normalized to start from
zero for both cases: weak and deep cooling. Deeper cooling causes the higher temperature variation by about 6°C. The
sequence of thousands of thermal images was recorded during the session lasting more than 20 min.

4. The analysis using R-C Foster and Cauerthemmal network approximations

Using the Thermal Object Identification (TOI) protocol, the analysis was performed in the frequency domain [17]. In
consequence, the skin as a multilayer thermal bio-structure can be modelled by R-C thermal ladder, either as the Foster
or Cauer network [17]. The results of thermal approximation of the model by the 4-time constants networks are presented
in figs 5-6.

0

Fig. 5: Discrete thermal time constants distribution for 2 regions of the skin with a) weak and b) deep cooling
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Fig. 6: Cumulative structure functions for 2 regions of the skin with a) weak and b) deep cooling

In order to confirm the correctness of results obtained using the TO/ methodology, the original and approximated

temperature during heating the skin were compared - fig. 7. As one see, agreement between temperatures in the

experiment and approximated by R-C Foster network is quite satisfactory.
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Fig. 7: Overplayed temperature curves from experiment and modelling for a) weak and b) deep cooling

The expected result concerning the time constants distribution is presented in fig. 8 and in table 1. All time
constants of the Foster network model are lower for deeper cooling. It means that the thermal reaction of the tissue is

faster for deep thermal provocation in comparison to weak cooling. It confirms the increase of perfusion of the skin with

stronger thermal stress.
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Fig. 8: Parameters of Foster network for 2 regions of the skin with weak (black bars) and deep cooling (grey
bars)
5
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Fig. 9: Parameters of Cauer network for 2 regions of the skin with weak (black bars) and deep cooling (grey

Cauer network

bars)

In addition, the Cauer network was calculated in order to get the thermal system which is physically
interpretable — fig. 9 and table 2. As the skin tissue is the multilayer structure, the R-C Cauer network corresponds

directly to the thermal parameters of the layers.

Table 1. Parameters of the Foster approximation of the thermal multilayer structure of the skin tissue

Weak cooling Deep cooling
R1=3,002 K/IW 712,698 s R1=2,238 KIW 1=1,789s
R2>=3,805 K/IW 72=12,33 s R2=6,013 KIW 2=8,236s
R3=1,837 KIW 73=89,561 s R3= 3,827 KIW 3=5520s
R4=3,575 KIW 74=291,802 s R4= 6,346 K/IW 74=283,99 s

Table 2. Parameters of the Cauer approximation of the thermal multilayer structure of the skin tissue

Weak cooling Deep cooling
R1=15,444 KIW C1=0,483 J/IK R1=4,830 K/IW C1=0,688 J/IK
R1=4,584 KIW C1=1,434 JIK R2=2,935 KIW C2=3,919 J/K
R1=4,865 K/IW C1=12,875 JIK R3=3,202 K/IW C3=34,86 J/IK
R1=3,5301 K/W C1=60,516 J/IK R4=1,251 KIW C1=162,94 JIK

5. Fitting the feedback loop model of thermoregulation to the experimental data

The next step of the research was to model quantitatively the thermoregulation effect in a tissue and estimate
the value of feedback coefficient g for the TFM model presented in fig. 1. Two approaches were tested. In all cases, the
thermal impedance obtained from the weak cooling experiment was transformed into the thermal impedance of deep
cooling by closing the linear feedback and estimating the coefficient . First, the optimization was used to calculate
simultaneously the coefficient # and the thermal resistances of Fostfer ladder chain R. The result is shown in fig. 10. As
one can see, the fitting of the Nyquist plots obtained for weak and deep cooling experiment after the optimisation was not
precise with the mean error MSE = 0.026 K/W. In this case p = 0.015 W/K —fig. 10.
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Fig. 10: Fitting the Nyquist plots from the experiment and simulation by changing feedback coefficient  and

resistances of Forster R-C network

In the next fitting, all parameters of the weakly cooled model were free to change. In this case the fitting was
much better with the error MSE = 2.5x10-8 K/W. Feedback coefficient # was estimated at 0.02 W/K - fig. 11. As one can
notice from both above experiments, the transform from week to deep cooling cannot be modelled precisely by adjusting

the value of the feedback coefficient 3, only. It denotes that the thermal system of a tissue including thermoregulation is

not linear. In the first approximation, especially for week thermal excitations, the thermoregulation can be analysed using

the linear feedback theory. More accurate analysis needs the more advanced techniques.
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Fig. 11: Fitting the Nyquist plots from the experiment and simulation by changing feedback coefficient p and all

parameters of Forster R-C network
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At the final stage of this research, the comparison of TFM and the inverse heat transfer model based on the Pennes
equation was made. It allowed confirmation that the level of the negative feedback corresponds to the perfusion
coefficient from the Pennes model of the human skin. The increase of perfusion coefficient refers to the value of the
feedback coefficient 8. The recently developed methodology of solving inverse thermal problems in bioengineering
allows estimating the perfusion coefficient of a tissue [14]. The comparison of the feedback coefficient S and the increase
of perfusion coefficient Aw is presented in table 3.

Table 3. Comparison of the feedback coefficient 8 and the increase of perfusion coefficient Aw

Feedback coefficient g8 Perfusion coefficient w
Weak cooling: 0.00078 1/s
0,02 W/K Deep cooling: 0.00123 1/s
Aw =0.00045 1/s

6. Conclusions

In this research, one proposed the simplified model of local thermoregulation effect in a skin tissue based on the
linear thermal feedback system theory. It has been proven that the feedback coefficient is relevant to the change of
perfusion in the widely accepted Pennes thermal model of a skin. The main conclusion was drawn as a hypothesis that
for the deep thermal provocation, the physical reaction of the alive body moves from the linear towards nonlinear thermal
behaviour.
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