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Abstract 

Active infrared thermography is an important non-destructive testing method used for revealing defect structures 
in materials. In many applications, thermographic data processing is necessary to extract defect features from a large 
number of thermal images. In this work, it is proposed to use exploratory factor analysis (EFA) for dimensionality reduction 
and feature extraction of thermographic data. By means of factor rotation, EFA minimizes the complexity of factor loadings 
and makes the results more interpretable. Hence, the defect information is highlighted while large signal-to-noise ratios 
are obtained. The feasibility of proposed method is illustrated with the experiment on a panel painting. 

1. Introduction 

Active infrared thermography (AIRT) [1], which uses an external energy source to heat the investigated object 
and records the thermal images reflecting the material surface temperature by infrared camera, is widely adopted in non-
destructive testing (NDT) for rapidly revealing defect structures. To highlight the defect features, thermographic data 
analysis methods are a necessity in many applications. In recent years, multivariate statistical methods, such as principal 
component analysis (PCA) [2], have been incorporated in this field [3] because of their abilities of dimensionality reduction 
and feature extraction. However, a main drawback of PCA is the lack of sparsity, which means that all elements in the 
loading vectors are typically non-zero. This characteristic limits the interpretability of the results and is not conducive to 
separating the defect information from the image backgrounds. Sparse PCA [4-6] can be adopted to overcome the limitation 
of PCA, while a remaining problem is how to specify the parameter controlling the sparsity. In this work, exploratory factor 
analysis (EFA) [7] is utilized as a better alternative of PCA for thermographic data analysis. By rotating the factor axes, 
each factor only focuses on a small number of highly correlated variables, resulting in more interpretable results. The 
remaining part of this paper is structured as follows. Section 2 describes the proposed methodology for thermographic data 
analysis. Then, the case study on a panel painting is presented in Section 3. Finally, Section 4 concludes the paper. 

2. Exploratory factor analysis of thermographic data 

Before applying EFA, it is necessary to transform the thermographic data structure from three-dimensional (3-D) 
to two-dimensional (2-D). As shown in Fig. 1, the thermal images collected in an AIRT experiment form a 3-D matrix whose 
size is 𝑛𝑛𝑡𝑡 × 𝑛𝑛𝑥𝑥 × 𝑛𝑛𝑦𝑦, where  𝑛𝑛𝑡𝑡 is the number of frames and 𝑛𝑛𝑥𝑥 × 𝑛𝑛𝑦𝑦 represents the total number of pixels contained in each 
image. After unfolding, the data can be reshaped to a 2-D matrix with a size of 𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦 × 𝑛𝑛𝑡𝑡. In the unfolded matrix shown in 
Fig. 2, there are totally 𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦 variables each of which represents the temperature change at a specific pixel.  

 
Fig. 1 : 3-D thermographic data structure 
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Fig. 2 :  Unfolded thermographic data matrix 

 
This matrix is processed by EFA to describe the variability among the variables in terms of a relatively small 

number of latent factors. The mathematical expression is as follows. 

𝐱𝐱𝑖𝑖 = 𝛍𝛍 + 𝚲𝚲𝐟𝐟𝑖𝑖 + 𝛆𝛆𝑖𝑖                                                                             (1) 

where 𝐱𝐱𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦×1 is the i-th column in the unfolded thermographic data matrix, 𝛍𝛍 ∈ 𝑅𝑅𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦×1 is the mean vector, 𝐟𝐟𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚×1 
is the corresponding factor vector whose length m is usually smaller than that of 𝐱𝐱𝑖𝑖, 𝚲𝚲 ∈ 𝑅𝑅𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦×𝑚𝑚 is the factor loading matrix, 
and 𝛆𝛆𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦×1 is the error term. It is clear that EFA models observed variables as linear combinations of several factors, 
plus error terms. There are two common approaches, i.e. maximum likelihood and principal axis factoring, that can be 
adopted to fit an EFA model [8]. For more details about the algorithms, please refer to the cited reference. 

Different from the conventional PCA, EFA often uses factor rotation [9] to enhance the interpretability of the 
loadings. Usually, a rotation method aims to minimize the number of variables that load on a factor. In doing this, the 
loadings become sparser and the model interpretation is improved. The factor rotation methods can be generally divided 
into two groups, namely oblique rotation and orthogonal rotation. An important difference between these two groups is that 
the former create factors correlated with each other while the latter leads to orthogonal factors. Herein, orthogonal rotation 
is adopted to better separate the information from different sources. Specifically, varimax rotation [10], which searches for 
a rotation of the original factors 𝚲𝚲𝐑𝐑 such that the sum of the variances of the squared loadings on each factor is maximized, 
is used. Mathematically, the orthonormal rotation matrix 𝐑𝐑 can be calculated by solving the following optimization problem. 

argmax
𝐑𝐑
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where 𝑚𝑚 is the number of factors, 𝑝𝑝 is the number of variables, and (𝚲𝚲𝐑𝐑)𝑖𝑖𝑖𝑖 denotes the element in the i-th row and j-th 
column in matrix 𝚲𝚲𝐑𝐑. In the applications to thermographic data analysis, 𝑝𝑝 = 𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦.  

After varimax rotation, each rotated factor tends to have high loadings for a smaller number of variables and low 
loadings for the rest, leading to nearly sparse properties. Therefore, the loading structure is simplified and much easier to 
interpret. In thermographic data analysis, this means that each factor only highlights the information of a small number of 
pixels, which is beneficial to separating the defects from the backgrounds. By reshaping each column of the rotated loading 
matrix 𝚲𝚲𝐑𝐑 to an image sized 𝑛𝑛𝑥𝑥 × 𝑛𝑛𝑦𝑦, the shapes and locations of the defects can be visualized. 

3. Case study 

The sample to investigate in the case study is a panel painting named “Madonna” and sized 15×21×2 cm3, where 
the panel is made of poplar wood. By inserting four Mylar sheets at different depths in the panel, the fabrication defects 
were generated as shown in Fig. 3. In the AIRT experiment, the energy source consisted of two 250W lamps (Siccatherm 
E27, OSRAM). The entire experiment lasted for 270 s, while the first 90 s belonged to the heating stage and the remaining 
time period was the cooling stage. The sampling interval was 1 s. The distance between each lamp and the painting was 
48 cm, while the two lamps were distanced by 50 cm. An infrared camera (ThermaCAM S65HS, FLIR) was used to record 
the thermal images during both the heating and cooling stages, whose resolution is 320×240 pixels. Fig. 4 shows some of 
the captured thermal images. It is difficult to identify the defects because of the emissivity variations contained in these 
images. As observed in Fig. 4, the colors constitute by different pigments have different chemical compositions and hence 
different thermal conductivities, resulting in the outline of the portrait in each thermal image. 

The entire thermographic dataset can be viewed as a 3-D matrix whose size is 270 × 240 × 320 . Before 
conducting further analysis, this matrix was unfolded to a 2-D matrix with size of 270 × 76800. In the unfolded matrix, each 
row corresponds to a thermal image and each column represents the temporal changes of a pixel value. 
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Fig .3: Panel painting and defect locations 

 
Fig. 4: Thermal images collected at the 20th, 100th, 200th, and 250th seconds from the beginning of the heating phase 

For comparison, both FA and PCA were used to process the thermographic data, whose results are shown in Fig. 
5 and Fig. 6, respectively. It is clear that both methods reveal the existence of defects A, B, and C. Defect D is too deep 
to be discovered by AIRT. Therefore, neither FA nor PCA discover this defect. Thanks to factor rotation, FA better separates 
the defects from the backgrounds and concentrates all detected defects in one loading image, i.e. the fifth loading, 
facilitating the identification of the defects. Although defects A, B, and C can also be identified in the PCA results, the 
separation of the defect information and backgrounds is not good, while different defect features distribute in different 
loading images. 

Signal-to-noise ratios (SNRs) [11] were calculated for both FA and PCA to compare these two methods 
quantitatively. The mathematical expression of SNR is as follows.  

𝑆𝑆𝑆𝑆𝑅𝑅 = |𝑆𝑆̅−𝑁𝑁�|
𝑣𝑣𝑣𝑣𝑣𝑣(𝑁𝑁)

                                                                                  (4) 

where 𝑆𝑆̅ is the average signal value, i.e. the average value of the pixels in a defective region, 𝑆𝑆� is the average value of 
noise, i.e. the average value of the pixels in the intact region, 𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆) is the standard deviation of the pixel values in the 
intact region. A larger SNR value indicates a better defect detection performance. Herein, the SNR values of FA were 
calculated based on the fifth loading image that contains most defect information, while the fifth, sixth, and seventh loading 
images of PCA are all investigated because PCA cannot highlight all defect features in a single loading image. The 
quantitative comparison results are listed in Table 1 where the largest SNR of each defect is in bold. In general, FA 
significantly outperforms PCA, which has larger SNR values of defects A and B. The sixth loading image of PCA shows a 
larger SNR of defect C. However, the other two defects cannot be identified in this image clearly. 
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Fig. 5: FA results (the first 8 loadings) 

  
Fig .6: PCA results (the first 8 loadings) 
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Table 1. SNR values of FA and PCA 

Methods Defect A Defect B Defect C All defects (A, B, and C)  
Fifth FA loading 2.6623 5.0384 2.7195 3.8847 

Fifth PCA loading 0.6321 4.1013 1.8046 2.5805 
Sixth PCA loading 1.1309 1.8962 4.0147 1.1886 

Seventh PCA loading 1.8292 2.5360 2.0604 1.4843 
 

4. Conclusions 

In this work, we illustrate that FA is an effective method to extract thermographic data characteristics and reveal 
defect structures in the tested objects. By conducting factor rotation, FA produces much sparser loading vectors than PCA 
without subjective parameter selection. As a result, different types of information can be separated, facilitating defect 
identification. The case study of a panel painting illustrates the feasibility of the proposed method. 
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