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Abstract 

The achievable spatial resolution in thermography decreases with the imaging depth, which leads to blurred 
images for deeper lying structures. The resolution limit has its origin in the second law of thermodynamics: heat diffusion 
on its way from the imaged structure to the sample surface leads to entropy production that is equal to the loss of 
information. In order to address this issue, additional available information about the sample has to be included in the 
regularization of the inverse problem, such as positivity or sparsity of the signals. We combine the benefits of acoustic and 
thermal imaging using non-linear reconstruction algorithms combined with the recently introduced virtual wave conceopt. 

1. Introduction 

A new approach for thermographic imaging, the so-called virtual wave concept (VWC) improves the quality of the 
2D or 3D thermographic image reconstruction by partly compensating the diffusion related information loss [1]. The idea 
of VWC is to transform the surface temperature signal, detected by an infrared (IR) camera, into an acoustic virtual wave 
field [2]. The first transformations of diffusive electromagnetic waves to acoustic wave fields have been shown by Lee et 
al. [2] and Gershenson [3] for geophysical applications. While the surface temperature fulfils the diffusion equation, the 
virtual wave field obeys the wave equation. In contrast to the diffusion equation, the wave equation describes a reversible 
process. However, reconstruction methods, well known from ultrasonic testing can be employed for 3D thermographic 
imaging [4]. The VWC is a two-step inverse process. The first inverse problem is severely ill-posed due to information loss 
that is equal to the entropy production during heat diffusion. To enhance the quality of the inverse solution we make use 
of additional information in form of positivity and sparsity [5]. The one-dimensional wave has a non-negative solution for all 
times. Hence, the additional information positivity is direct applicable [6] for reconstructing the virtual wave field. For a 
multidimensional problem, this is not directly true. However, we can calculate the circular projections for the 2D case and 
the spherical projections for the 3D case, to obtain positivity. The spherical projections correspond to a time integral of the 
3D virtual wave. To calculate the circular projections in 2D, the Abel transformation can be applied [7]. Sparsity is introduced 
by an appropriate formulation of the objective function.  

2. The virtual wave concept 

The formal relationship between temperature field 𝑇𝑇(𝐫𝐫, 𝑡𝑡) and virtual wave field 𝑇𝑇virt(𝐫𝐫, 𝑡𝑡′), for the same position 
vector 𝐫𝐫 but different time scales 𝑡𝑡 and 𝑡𝑡′, is given by a Fredholm integral of the first kind: 

𝑇𝑇(𝐫𝐫, 𝑡𝑡) = ∫ 𝐾𝐾(𝑡𝑡, 𝑡𝑡′)∞
−∞ 𝑇𝑇virt(𝐫𝐫, 𝑡𝑡′) d𝑡𝑡′   with   𝐾𝐾(𝑡𝑡, 𝑡𝑡′) =  𝑐𝑐

√𝜋𝜋𝜋𝜋𝜋𝜋
𝑒𝑒−

𝑐𝑐2(𝑡𝑡′)2

4𝛼𝛼𝑡𝑡     for   𝑡𝑡 > 0.  (1) 

The thermal diffusivity 𝛼𝛼 and the virtual speed of sound 𝑐𝑐 are the characteristic parameters for heat and virtual 
wave propagation. While 𝑇𝑇(𝐫𝐫, 𝑡𝑡) obeys the heat equation, 𝑇𝑇virt(𝐫𝐫, 𝑡𝑡′) fulfils the photoacoustic wave equation. The above 
equation is valid for a Dirac-Delta-like heating in time domain, for other temporal heating functions the solution is the 
convolution in time with this function. The kernel 𝐾𝐾(𝑡𝑡, 𝑡𝑡′) works as transition function and contains the characteristic 
parameters 𝛼𝛼 and 𝑐𝑐. It is important to note that 𝐾𝐾(𝑡𝑡, 𝑡𝑡′) is independent of the position vector 𝐫𝐫. That means, when 
considering surface temperature data, that is acquired by an IR-camera, we have a pixel-wise transformation. Since 
thermography data is discrete in time and space, we have to discretize the above relationship between 𝑇𝑇(𝐫𝐫, 𝑡𝑡) and 
𝑇𝑇virt(𝐫𝐫, 𝑡𝑡′): 

𝐓𝐓 = 𝐊𝐊𝐓𝐓virt      (2) 

The matrix 𝐊𝐊 has rapidly decaying singular values, hence calculating 𝐓𝐓virt based on 𝐓𝐓 is a severely ill-posed 
inverse problem. Due to this, we need regularization. In principle, we can employ direct or iterative regularization methods. 
By using the truncated singular value decomposition (T-SVD) or Tikhonov regularization the pseudo-inverse or Moore-
Penrose 𝐊𝐊†is approximated. 
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In Figure 1, the process steps of the virtual wave concept based on simulated data are depicted. Here we consider 
an experiment, where a laser pulse heats a 2D sample to be imaged. Because of the transparency of the bulk material in 
the wavelength of the laser only the inclusions are heated. Consequently, they act as internal heat sources and we have 
a certain initial temperature distribution 𝑇𝑇0rec(𝐫𝐫). The heat diffuses to the surface, where the temporal surface temperature 
𝑇𝑇(𝐫𝐫, 𝑡𝑡) is recorded. Then, as mentioned before, we have to solve a severely ill-posed inverse problem. In this case, for the 
computation of the virtual wave field 𝑇𝑇virt(𝐫𝐫, 𝑡𝑡), we have employed ADMM, which is an efficient iterative algorithm for 
constrained optimization. We have incorporated positivity and sparsity as prior information. Sparsity is respected because 
we assume that we only have a few point scatterers in the sample under test and hence a sparse virtual wave field. As 
one can see the computed virtual wave field 𝑇𝑇virt(𝐫𝐫, 𝑡𝑡) meets the ideal virtual wave field 𝑇𝑇virtideal(𝐫𝐫, 𝑡𝑡) well but the blurring due 
to information loss cannot be fully eliminated. As a last step, we can apply well developed ultrasonic methods in order to 
reconstruct the initial temperature distribution 𝑇𝑇0rec(𝐫𝐫). Despite the rather strong blurring of 𝑇𝑇virt(𝐫𝐫, 𝑡𝑡)for deeper lying 
structures, even deeper structures can be well reconstructed by ultrasonic reconstruction in 𝑇𝑇0rec(𝐫𝐫). The ultrasound 
reconstruction „averages“ signals from all directions and therefore the noise is reduced very effectively. 
 

 
Fig. 1. Process steps of the virtual wave concept: First, the internal sources are heated, by e.g. optical 

excitation, yielding a certain initial temperature distribution 𝑇𝑇0(𝐫𝐫). Simultaneously, the surface temperature signal 𝑇𝑇(𝐫𝐫, 𝑡𝑡) 
is measured using an IR-camera. Then the temperature signal is transformed into an acoustic virtual wave signal 
𝑇𝑇virt(𝐫𝐫, 𝑡𝑡). When comparing 𝑇𝑇virt(𝐫𝐫, 𝑡𝑡) with the ideal virtual wave field  𝑇𝑇virtideal(𝐫𝐫, 𝑡𝑡), we see that the former is blurred 

because of entropy production during heat diffusion.  As a final step, we can employ ultrasonic methods to reconstruct 
the initial temperature distribution 𝑇𝑇0rec(𝐫𝐫). 

 

3. The two-step reconstruction process 

The virtual wave is an acoustic wave, which is the solution of the wave equation, and obeys the same initial 
conditions as the original heat diffusion problem. This transformation allows the application of ultrasound imaging 
algorithms such as the Synthetic Aperture Focusing Technique (SAFT). In this case, sparse regularization methods can 
be applied directly to the sub-problems below: 

min
𝐝𝐝≥0

�𝐛𝐛 − 𝐊𝐊�𝐝𝐝�2 + 𝜆𝜆‖𝐝𝐝‖1, then min
𝐯𝐯≥0

�𝐝𝐝 − 𝐓𝐓SAFT𝑇𝑇 𝐯𝐯�2 + 𝜏𝜏‖𝐯𝐯‖1,                             (3) 

where 𝐛𝐛 = 𝑣𝑣𝑒𝑒𝑐𝑐(𝐓𝐓) is the vectorised form of the temporal surface temperature profile, 𝐝𝐝 = 𝑣𝑣𝑒𝑒𝑐𝑐(𝐓𝐓virt), denotes the vectorised 
virtual wave, 𝐯𝐯 is the vectorized initial temperature distribution of the cross-section, and 𝜆𝜆, 𝜏𝜏 are the regularization 
parameters. Note that we are working in the dimension of the vectorized images. Namely, if the resolution of the temporal 
surface temperature measurement 𝐓𝐓 is 50 × 50, then 𝐛𝐛 ∈ ℝ2500×1 and 𝐊𝐊, 𝐓𝐓SAFT𝑇𝑇 ∈ ℝ2500×2500. Furthermore, if 𝐊𝐊 ∈ ℝ50×50 
denotes the matrix (with or without Abel transform) in Eq. (2), then the corresponding block diagonal matrix  𝐊𝐊� ∈ ℝ2500×2500 
in Eq. (3) is defined as follows: 
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𝐊𝐊� = �
𝐊𝐊 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐊𝐊

�.                               (4) 

In Eq. (3), the first sub-problem is related to thermographic imaging reconstructing the virtual wave field, while the 
second is an ultrasound imaging task. Note that we always got better results with the two-step reconstruction compared to 
one-step regularization methods using the full problem. In the proposed work, we are investigating this phenomenon in 
detail. Assuming that the systems of linear equations defined by 𝐊𝐊�  and 𝐓𝐓SAFT𝑇𝑇  are independent, the two step reconstruction 
is more stable than solving the overall problem using the product 𝐊𝐊�𝐓𝐓SAFT𝑇𝑇 . On the other hand, in thermographic imaging, 
the solutions are not independent, since we use the solution of the first sub-problem in the second equation. The 
conditionality of solving two consecutive linear inverse problems 𝐛𝐛 = 𝐀𝐀𝐝𝐝 and 𝐝𝐝 = 𝐁𝐁𝐯𝐯 can be analysed by the following 
identity: 

cond(𝐀𝐀𝐁𝐁) = ‖𝐀𝐀𝐁𝐁‖ ⋅ ‖𝐁𝐁+𝑨𝑨+‖ ≤ ‖𝐀𝐀‖‖𝐁𝐁‖ ⋅ ‖𝐁𝐁+‖‖𝐀𝐀+‖ = cond(𝐀𝐀) ⋅ cond(𝐁𝐁),   (5) 

where the first equality holds if (𝐀𝐀𝐁𝐁)+ = 𝐁𝐁+𝑨𝑨+ (see Theorem 3.1 in [10]). In case of 𝐀𝐀 =  𝐊𝐊�  and 𝐁𝐁 = 𝐓𝐓SAFT𝑇𝑇 , our experiments 
showed that Eq. (5) is satisfied for a wide range of values of the thermal diffusivity parameter 𝛼𝛼. This implies that the 
condition of the one-step reconstruction is always better than or as good as the two step reconstruction. However, Eq. (5) 
holds only for the solutions of consecutive linear inverse problems, therefore, regularization and non-linear techniques can 
improve the reconstruction accuracy without increasing the numerical sensitivity. By doing so, sparsity and positivity can 
also be exploited in both reconstruction steps. 

4. Results 

Results for the two-stage reconstruction process using for different additional information are shown for 
simulations and experimentally from eddy current heated bars in an epoxy cube. For using positivity and sparsity as 
additional information, the Douglas Rachford splitting method [8,9] is implemented. The spatial resolution could be 
enhanced by a factor of two compared to linear methods, such as the truncated singular value decomposition (T-SVD) or 
Tikhonov regularization. 
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