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Abstract 

The concept of multiscale thermographic data processing is proposed in this work for the inspection of civil 
engineering structures. In the proposed framework, thermograms of buildings collected by solar loading thermography are 
decomposed into a number of intrinsic mode functions under different scales by multidimensional ensemble empirical 
mode decomposition (MEEMD). Then, principal component analysis (PCA) is adopted to extract the features at each scale. 
Compared to the popular principal component thermography (PCT) method that applies PCA to raw thermographic data, 
multiscale analysis provides an opportunity to zoom in on different types of structural features. 

1. Introduction  

Infrared thermography is a widely adopted non-destructive testing method, where the thermograms obtained by 
infrared cameras capture the surface temperature distributions of the investigated targets through time so the information 
of both the surface and internal structures can potentially be extracted. Although some obvious structural information can 
be obtained by the naked-eye observation of the raw (unprocessed) thermograms, data processing is usually a necessity 
in order to improve the detection results [1-6]. Among the popular techniques, principal component thermography (PCT) 
[7] and its extensions [8-11] have been widely implemented in different fields because of their good performance in noise 
reduction, data compression, and feature extraction. 

Recently, solar loading thermography was demonstrated to be a promising method for the inspection of civil 
engineering structures [12], where the surface temperature evolution of the inspected object subjected to solar irradiation 
and environmental temperature changes are recorded with an infrared camera. After data acquisition, advanced signal 
processing methods, such as PCT [7], greatly improve the contrast of the structural features of the investigated objects. 
Nevertheless, the existing thermographic data processing methods seldom consider the multiple spatial scale issue that is 
an inherent characteristic of civil engineering structures. As a result, some structural details may not be revealed. 

In the past, multi-dimensional ensemble empirical mode decomposition (MEEMD) [13] was successfully applied 
to the inspection of polymer composite materials [14] and mosaics [15]. In those works, MEEMD was implemented to each 
thermogram for signal decomposition. In doing this, the high-frequency noise, the low-frequency backgrounds, and the 
feature-related information are separated into a number of intrinsic mode functions (IMFs). Consequently, the material 
features can be visually identified by reconstructing these IMFs into a number of component images. However, further 
analysis of the decomposition result of every thermogram captured in infrared testing is a time-consuming and laborious 
task. 

In this work, a multiscale thermographic data processing framework is proposed, which uses MEEMD to 
decompose each thermogram collected in the testing experiments into a series of IMFs corresponding to different spatial 
scales and then adopts PCA [16] to extract the information contained in each scale. Experimental results on the processing 
of solar loading thermographic data show that the proposed method can be considered as an interesting complement to 
the conventional PCT. 

2. Methodologies 

2.1. Solar loading thermography 

Solar loading thermography is a combination of both passive and active infrared testing approaches, where the 
main energy source is solar irradiation while environmental temperature changes also affect the surface temperature 
evolution of the investigated object. Such an energy source cannot be precisely controlled, because of the environmental 
weather effects. As in other types of infrared testing, the surface temperature of the inspected object is recorded by an 
infrared camera during the testing time period. Then, the acquired thermographic data, i.e. the thermograms, are usually 
processed with signal processing, statistical, or machine learning methods for noise reduction, contrast improvement, and 
feature extraction, which is useful for characterization of the surface/subsurface features or defects. 
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2.2. Decomposition with multi-dimensional ensemble empirical mode decomposition 

When applied to civil engineering applications, the solar loading thermography testing often result in thermograms 
containing multi-spatial scale information, because multiple spatial scales are an inherent characteristics of most civil 
engineering structures. Here, we propose to integrate MEEMD and PCA to achieve multiscale analysis of the solar loading 
thermographic data. The flowchart is shown in Fig. 1. 

 

 
Fig. 1. Flowchart of Multiscale Thermographic Data Analysis 

After the thermograms are collected, MEEMD is implemented to decompose each thermogram into different 
spatial scales. The fundamental of MEEMD is the empirical mode decomposition (EMD) method [17] that is a 
nonparametric adaptive data analysis method. Compared with the wavelet-based mode decomposition methods [18], EMD 
does not require user-specified parameters and can be adopted to handle nonlinear and nonstationary problems. For a 
one-dimensional (1-D) signal 𝑥𝑥, its EMD results can be represented by the following equation: 
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where 𝑐𝑐𝑗𝑗 is the jth IMF decomposed from the original signal 𝑥𝑥 sorting from the highest frequency to the lowest frequency, 
𝑟𝑟 is the residue of the original data. The IMFs provide information in different scales, which are functions satisfying the 
following requirements [19]. 

(a) The number of extrema and the number of zero-crossings must either be equal or differ at most by one.  
(b) At any point, the mean value of the upper and lower envelopes defined by the local maxima and local minima is 

zero. 
The procedure of extracting an IMF is called sifting. For a 1-D signal 𝑥𝑥(𝑡𝑡), the sifting process of the conventional EMD 

can be briefly described as following. 
(1) Let the data 𝑆𝑆(𝑡𝑡) = 𝑥𝑥(𝑡𝑡). 
(2) Identify all the local extrema in 𝑆𝑆(𝑡𝑡).     
(3) Connect all the local maxima by a cubic spline line to generate the upper envelope.  
(4) Connect all the local minima by a cubic spline line to generate the lower envelope.  
(5) Calculate the mean of the two envelops which is denoted as 𝑚𝑚(𝑡𝑡). This produces a lower frequency component 

than the original signal. 
(6) Subtract 𝑚𝑚(𝑡𝑡) from 𝑆𝑆(𝑡𝑡) to obtain an oscillatory signal ℎ(𝑡𝑡).  
(7) Check if ℎ(𝑡𝑡) satisfies the requirements for an IMF. 
(8) If the conditions of IMF are not satisfied, ℎ(𝑡𝑡) is treated as the data, i.e. 𝑆𝑆(𝑡𝑡) = ℎ(𝑡𝑡), and the above steps are 

repeated. 
(9) Otherwise, an IMF is obtained, i.e. 𝑐𝑐1(𝑡𝑡) = ℎ(𝑡𝑡). 
(10) Treat the residue between the original data 𝑥𝑥(𝑡𝑡) and all obtained IMFs as the new data and repeat the previous 

steps to find out all the IMFs. 
(11) This iterative procedure is terminated when the residue r becomes a monotonic function. 

A major limitation of EMD is due to the mode mixing problem [20], which means that a single IMF consists of 
multiple different levels of signal interferences or that the same level of signals occurs in different IMFs. The cause of this 
problem is the intermittency phenomenon in the signal. In such cases, ensemble empirical mode decomposition (EEMD) 
[20] method is a useful alternative. 

EEMD is a type of noise-assisted data analysis method, which repeats EMD multiple times and achieves a “true” 
IMF by averaging the corresponding IMFs obtained in different trials. In each trial, EMD is conducted on a generated signal 
that is a sum of the original signal and a series of white noise with a finite amplitude. By taking average, the mode mixing 
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effects and the noises are cancelled out and the decomposition results are more reasonable. 
The EEMD method was further extended to a multi-dimensional version, i.e. MEEMD [13]. Herein, it is used to 

deal with two-dimensional (2-D) signals, i.e. the thermograms recorded in the solar loading thermography experiments. As 
shown in Fig. 1, each thermogram can be regarded as a 2-D signal whose two dimensions are horizontal pixels (x-direction) 
and vertical pixels (y-direction), respectively. In another point of view, each thermogram is a collection of a series of 1-D 
signals in x- or y-direction. In MEEMD, EEMD is applied to each x-direction signal and decomposes it to 𝐽𝐽𝑥𝑥 IMFs. As a 
result, a thermogram is decomposed to 𝑘𝑘 images. Then, EEMD is implemented again to decompose each y-direction signal 
in these images into 𝐽𝐽𝑦𝑦 IMFs. These IMFs are reconstructed to 𝐽𝐽𝑥𝑥𝐽𝐽𝑦𝑦 sub-images each of which is denoted as ℎ𝑗𝑗,𝑖𝑖, where 
𝑗𝑗 = 1, … , 𝐽𝐽𝑥𝑥 and 𝑖𝑖 = 1, … , 𝐽𝐽𝑦𝑦. Then, the sub-images are recombined into 𝑘𝑘 = min (𝐽𝐽𝑥𝑥, 𝐽𝐽𝑦𝑦) component images, where the ith 
component can be calculated as 

𝐶𝐶𝑖𝑖 = ∑ ℎ𝑖𝑖,𝑗𝑗
𝐽𝐽𝑦𝑦
𝑗𝑗=𝑖𝑖 + ∑ ℎ𝑗𝑗,𝑖𝑖

𝐽𝐽𝑥𝑥
𝑗𝑗=𝑖𝑖+1                                                                        (2) 

In doing this, each thermogram is decomposed into k component images with a descending order of spatial frequency, 
providing a multiscale view of the thermographic data. For more details of the MEEMD algorithm, please refer to the cited 
paper [13]. 

  

2.3. Processing with principal component analysis 

Supposing that there are 𝑛𝑛𝑡𝑡  thermograms collected in the experiments (typically several hundreds), 𝑛𝑛𝑡𝑡𝑘𝑘 
component images are obtained after conducting MEEMD. Investigating each of these component images with naked eyes 
is laborious and impractical. Therefore, it is desired to extract the information from the images corresponding to each scale 
by dimensionality reduction. Here, PCA is used for further analysis. 

In previous research, PCA was implemented to process thermographic data and summarize defect information 
contained in the raw thermograms. Such a method is named PCT [7]. In the first step of PCT, the entire thermographic 
dataset is transformed to a 2-D data matrix by vectorising each thermogram. After data normalization, PCA is implemented, 
whose mathematical expression is as follows. 

𝑋𝑋 = 𝑇𝑇𝑃𝑃𝑇𝑇                                                                                    (2) 

where 𝑋𝑋 is one of the normalized 2-D data matrix obtained in the previous steps and 𝑇𝑇 is the score matrix each column of 
which is a vector of principal component (PC). The first PC explains the largest fraction of the variance in the dataset. The 
second PC is orthogonal to the first one and contains most of variation information that is not explained by the first PC, 
and so on. Therefore, most systematic variation information is expressed by the first several PCs. 𝑃𝑃 is the loading matrix 
describing the transformation relationship between 𝑋𝑋  and 𝑇𝑇 , which reflects the correlation between the pixels in the 
thermograms. Then, the loading vectors corresponding to the first several PCs are reshaped and visualized as a series of 
feature images. In doing this, it is not necessary to exam all the raw thermograms. Instead, only a small number of feature 
images should be checked. 

Herein, we apply PCA in a similar way to PCT to accomplish multiscale thermographic data analysis. Denote the 
jth MEEMD component decomposed from the ith thermogram as 𝑐𝑐𝑗𝑗𝑖𝑖. Construct a 2-D matrix 𝑋𝑋𝑗𝑗 in which the ith row is the 
vectorised 𝑐𝑐𝑗𝑗𝑖𝑖 . Supposing that 𝑋𝑋𝑗𝑗  has been normalized, PCA can be applied to this matrix and the loading matrix 𝑃𝑃𝑗𝑗  is 
calculated. By reshaping the first several columns in each 𝑃𝑃𝑗𝑗  matrix (𝑗𝑗 = 1, … , 𝑘𝑘) to matrices with size of 𝑛𝑛𝑥𝑥 × 𝑛𝑛𝑦𝑦  and 
visualizing each of them, the important features in different scales are highlighted. It is noted that the conventional PCT 
can also be implemented. The multiscale analysis results are the supplement of conventional PCT. 

3. Experimental Results 

3.1. Raw thermograms 

In the experiment of solar loading thermography, a series of thermograms were obtained to inspect the civil 
engineering structures of a building at Laval University campus (Canada). Fig. 2 shows a photo of the inspected building 
area. In addition to the surface structures, there are two internal structure signatures that are of interest, including a sealed 
door and the floor’s slab as marked in the thermogram shown in Fig. 3(a). The area of the region of interest is 128 × 128 
pixels. The blue coloured region at the right bottom is a tree in the foreground. All four subplots in Fig. 3 are the raw 
thermograms recorded by a long-wave infrared microbolometer at different time points. It is clear that most of the 
thermograms do not show distinguishable boundary of the slab. In the meantime, the surface characteristics at the small 
spatial scale, such as the ceramic tiles, are almost invisible in the raw thermograms. Therefore, the advanced 
thermographic data decomposition and analysis methods are necessary to improve the identification of the detailed civil 
engineering structures. 
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Fig. 2. View of inspected wall. 

 
(a)                                                            (b)  

   
(c)                                                            (d)  

Fig. 3. Raw thermograms acquired at different time points 

3.2. Decomposition of thermograms 

MEEMD was implemented to process 38 thermograms. Each thermogram was decomposed to five components 
each of which reflects the features at a different scale, i.e. a different spatial frequency. Fig. 4 shows the decomposition 
results of two thermograms, where the component images corresponding to high frequencies are plotted on the top while 
the signals with progressively lower frequencies are visualized towards the bottom. It is observed that the component 
image at the highest frequency is very noisy, while the lowest frequency highlights the foreground of the thermograms. 
Some structure information is extracted by the component images at the middle frequency. However, it is hard to distinguish 
between the interested structures and the surroundings. In addition, it is difficult to explore in detail all the component 
images because of the large amount of them. 
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Fig. 4. MEEMD results 

3.3. Multiscale data processing 

In the next step, PCA was used to further extract features from both the raw thermograms and the MEEMD 
component images at different scales. Fig. 5 shows three loading images of PCT. Obviously, compared to the raw 
thermograms, the PCT results present an improved contrast between the slab and the surrounding. In addition, the sealed 
door can be viewed clearly.  

 
Fig.5. PCA loading images of raw thermograms, i.e. PCT results 

More detailed structures of the surface features are clearly displayed in the multiscale analysis results. The first 
two results in Fig. 6 are the loading images obtained by applying PCA on the IMF signals corresponding to the highest 
frequencies, which show the outlines of the ceramic tiles clearly. The rightmost image shows the results corresponding to 
the lowest spatial frequency, which distinguishes the foreground. 
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Fig. 6: PCA Loading Images of IMF Signals Corresponding to Highest Frequencies and Lowest Frequency 

4. Conclusions 

In this paper, a multiscale thermographic data analysis method is proposed for the inspection of the civil 
engineering structures. By integrating the benefits of MEEMD and PCA, the proposed method provides an opportunity to 
zoom in on different types of structural features, whose feasibility is illustrated with the experimental results. 
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