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Abstract  

 This paper deals with comparison of Fourier – Kirchhoff (FK), Pennes and Dual Phase Lag (DPL) heat transfer 
1D models of a single-layer tissue. Thermal modelling presented in this paper is based on the concept of thermal 
impedance by using the Laplace transform for s=jω. In such a case, the models for simple geometry can be solved 
analytically. Then, the poles of the thermal impedance are identified using e.g. Vector Fitting method which allows 
calculating the thermal impedance as a sum of partial fractions. It corresponds directly to the Foster Network of a thermal 
object. Models are compared both in frequency and time domain for wide range of frequencies.   

1. Introduction 

Thermal modelling of the skin is the field of interest for many researches. Knowing both thermal parameters of 
the skin and its reaction for thermal excitation is useful to describe pathologies of the skin tissue like a tumours, psoriasis 
and inflammations including pre-cancerous lesions and cancers. Skin is a complex structure with three main layers. There 
are many approaches to thermal modelling such structure. The most common is the Fourier – Kirchhoff heat transfer 
model. Many models are the modification on the Fourier – Kirchhoff one, e.g. the Pennes [1]model which assumes the 
presence of perfusion. The other models are SPL and DPL – single-phase-lag and dual-phase-lag ones. It assumes that 

there is relaxation time q which indicates the time lag caused by the finite propagation time of heat flux in a tissue. This 
model was first described by Cattaneo [2] and Vernotte [3] in 1958. In 1995 Tzou [4] proposed DPL (dual-phase-lag) model 

which generalized previous approach and assumes another time constant T which is known as the thermalization time. In 
the literature there are many simulation results of these models. Most of them present the numerical solutions. The value 
of parameters especially for DPL model are differ in many papers [5-14]. The thermalization time vary from few miliseconds 
[11, 12] to few tens seconds [13, 14]. The same for the relaxation time. In this paper the comparison of F-K, Pennes and 
DPL model is introduced by analysing them analytically in the frequency domain.  

2. Thermal models of a tissue in frequency domain 

2.1. The Fourier – Kirchhoff model 

According the Fourier- Kirchhoff law, heat is transferred in between 2 points in the space if there is a thermal 
gradient [15, 16]. 

𝑞 = −𝑘
𝜕𝑇

𝜕𝑥
      (1) 

 
where q is the heat flux in W/m2 and k is the thermal conductivity. 
The well-known Fourier – Kirchhoff law is expressed as equation (2)  

𝑘
𝜕2𝑇

𝜕𝑥2
− 𝐶𝑡ℎ

𝜕𝑇

𝜕𝑥
= −𝑞𝑣     (2) 

 
where qv is power density dissipated in the tissue in W/m3, Cth is thermal capacity in J/Km3. 

In order to simplify the calculus, one can present equation (2) in the frequency domain by using the Laplace 
transform for s = jω. 

∇2𝑇 −
𝑇

𝐿2
= −

𝑞𝑣

𝑘
      (3) 

where L is diffusion length and is equal to: 

𝐿 =  √
𝑘

𝑗𝜔𝐶𝑡ℎ
      (4) 

The differential equation x has its analytical solution for 1D geometry in frequency domain: 

𝑇(𝑗𝜔) = 𝐴𝑒−
𝑑

𝐿 + 𝐵𝑒
𝑑

𝐿 +
𝑞𝑣

𝑗𝜔𝐶𝑡ℎ
     (5) 

 
where A and B are the integration constants, that can be found using the boundary conditions. 
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2.2. The Pennes model 

The Pennes model of heat transfer assumes that the perfusion w generates a=or/and absorbs an additional heat 
in a tissue [1]. In addition, the model can apply a metabolic heat generation in a tissue. The perfusion coefficient simple 
modifies the differential equation of F-K heat transfer.   

The heat conduction model is now presented as: 

𝑘∇2T − 𝐶𝑡ℎ
𝜕𝑇

𝜕𝑡
− w𝐶𝑡ℎ𝑏 =  −(𝑞𝑣 + 𝑞𝑣𝑚 )    (6) 

where the thermal capacity of blood Cthb = qbcb can differ from the thermal capacity of a tissue Cth, and ρb and cb denote 
the density and the specific heat of blood. 
The perfusion coefficient w modifies the diffusion length L. 

𝐿(𝑗𝜔) = √
𝑘

𝑗𝜔𝐶𝑡ℎ+𝑤𝐶𝑡ℎ𝑏
      (7) 

At last, the analytical solution of the model can be presented as 

𝑇(𝑗𝜔) =  𝐴𝑒−
𝑑

𝐿 + 𝐵𝑒
𝑑

𝐿 +
𝑞𝑣+𝑞𝑣𝑚

𝑗𝜔𝐶𝑡ℎ
     (8) 

2.3. Dual Phase Lag model 

The Dual Phase Lag model assumes that the heat is transferred not only due to the temperature gradient. In 
addition, thermal energy can be generated and transfers if both the temperature and the heat flux are varying in time. In 

consequence, 2 additional thermal time constants are introduced displaying both an additional relaxation of heat q and a 

lag of temperature T [4,17, 18]. 

𝑞 + 𝜏𝑞
𝜕𝑞

𝜕𝑡
= −𝑘(

𝜕𝑇

𝜕𝑥
+ 𝜏𝑇

𝜕2𝑇

𝜕𝑥𝜕𝑡
)     (9) 

Using the Laplace transform for the equation (9), it is possible to redefine the heat flux and thermal conductivity 
in the more general forms: 

𝑞 = −𝑘̃
𝜕𝑇

𝜕𝑥
      (10) 

where 

𝑘̃ = 𝑘̃
1+𝑗𝜏𝑇

1+𝑗𝜏𝑞
      (11) 

Introducing the new thermal conductivity (11), one can solve the heat transfer equation in a tissue in the frequency 
domain using the classical heat transfer equation (2)  

2.4. Boundary conditions and analitycal solution of the models for a single layer tissue 

Let us assume that the tissue has the thickness d and is heating by the flux q0 at the frontal side (for x = 0). This 
case corresponds to the well-known cold stress examination practiced in medicine. First, the skin tissue is cooled down 
and then it is warming by flowing blood and convection from ambient. This process can be approximated by the heating 
using the external heat flux. At the bottom side (x = d), either isothermal or forced convection boundary condition can be 
assumed due to the high blood flow. The blood has the body-core temperature Tb. 

 

𝑞0 = −𝑘̃
𝜕𝑇

𝜕𝑥
|

𝑥=0
      (12) 

Using (12) for isothermal boundary condition at the bottom side of a tissue, it is possible to calculate integration 
constants A and B by solving the set of 2 linear equations. 

𝐴 − 𝐵 = −
𝑞0𝐿

𝑘
 

      (13) 

𝐴𝑒−
𝑑
𝐿 + 𝐵𝑒

𝑑
𝐿 = 𝑇𝑏 −

𝑞𝑣 + 𝑞𝑣𝑚

𝑗𝐶𝑡ℎ
 

Alternatively, it is possible to define the convective boundary condition at the bottom side of the sample for x = d 
in the form: 

𝐴(
𝑘̃

𝐿
𝑒−

𝑑

𝐿 − ℎ𝑒−
𝑑

𝐿 ) + 𝐵(−
𝑘̃

𝐿
𝑒

𝑑

𝐿 − ℎ𝑒
𝑑

𝐿 ) = ℎ
𝑞𝑣+𝑞𝑣𝑚

𝑗𝜔𝐶𝑡ℎ
    (14) 

Analytical solution of equations (13) and (14) leads to determine both temperature and thermal impedance in 
frequency domain that can be presented graphically as the Nyquist's plot. 

𝑇(𝑥−= 0, 𝑗𝜔) = 𝐴 + 𝐵 +
𝑞𝑣 + 𝑞𝑚

𝑗𝜔𝐶𝑡ℎ
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        (15) 

𝑇(𝑥 = 𝑑, 𝑗𝜔) = 𝐴𝑒−
𝑑
𝐿 + 𝐵𝑒

𝑑
𝐿 +

𝑞𝑣 + 𝑞𝑣𝑚

𝑗𝜔𝐶𝑡ℎ
 

3. Methods and simulation results  

Using the initial and boundary conditions for single tissue layer, the models can easily be solved in frequency 
domain. Then the Laplace transform has to be calculated for power P(t), and finally, the thermal impedance is estimated 
as: 

𝑍𝑡ℎ(𝑗𝜔) =
𝑇(𝑗𝜔)

𝑃(𝑗𝜔)
      (16) 

where power is typically the scaled Heaviside's step function with its Laplace transform P(jω) =P0/jω. 
Then Vector Fitting method is applied in order to approximate thermal impedance as the sum of partial fractions. 

It leads to the distribution of thermal time constants and finally thermal response in time. 

𝑇(𝑡) ≈ ∑ 𝑅𝑖𝑃0(1 − 𝑒
𝑡

𝜏𝑖)𝑁
𝑖=1      (17) 

In order to compare 3 presented thermal models, the simulations were performed for a single layer tissue sample 
with the parameters presented in Table 1.  

Table 1. The model parameters  

Parameter Unit Simulation 1 

Thermal conductivity k  W/(m·K) 1  

thickness of the sample d m 0.001  

thermal capacity of a tissue Cth J/m3K 3.96 · 106  

thermal capacity of blood Cthb J/m3K 4.16 · 106  

perfusion of a tissue w 1/s 0.00125  

relaxation time constant of the DPL τq s 10−3  

Inertial time constant of the DPL model τT s T = 10−2 

 

The analysis were performed for angular frequency in the wide range starting at ωmin = 10−6 1/s up to ωmax = 106 

1/s. The rational approximation of the thermal impedance in the frequency domain was calculated for the 7th order 
polynomial in the denominator. In consequence, 7-pole approximation of thermal impedance was used (np = 7). The 
calculations were performed for N=10000 angular frequencies not uniformly distributed in the chosen range (ωmin, ωmax). 

The results both in time and frequency domains are presented in graphical form in Figures 1 and 2. 

 
Fig 1. Thermal impedance of the slab for FK, DPL and Pennes heat transfer models for ω ∈ (10−6,106) 1/s, at 

the frontal side of the sample (x = 0) 
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Fig 2. Temperature rise at the front site of the tissue (x = 0): for the transient and steady states and at the 

beginning of thermal process 

The complex thermal impedance in the wide range of the angular frequencies is presented in Figure 1. It is possible 
to notice, that for low angular frequencies, the thermal impedance obtained from F-K and DPL models are overlapping. 

In the case of the high angular frequency range, the thermal impedance obtained from F-K and Pennes models are 
overlapping. The curves approach the origin of the coordinate system with the angle of 45º. For high frequencies, the 
thermal impedance for DPL model significantly differs from F-K and Pennes models exhibiting the higher phase lag. 

For transient and steady states, temperature evolutions for F-K and DPL models are overlapping, in contrast to the 
beginning of heating where temperature rises for F-K and Pennes models are the same. As expected, at the beginning of 
thermal process there is the significant temperature lag for the DPL model – Figure 2. 

 

4. Conclusion  

The analysis of three thermal models of skin tissue are presented in this paper (Fourier- Kirchhoff, Pennes and DPL). 
Models are solved analytically in frequency domain. The approximation using Vector Fitting method was done in order to 
fit the model to the sum of exponential function. The comparison of the models is done for low and high frequencies. There 
are big deviation of the parameters of relaxation and temperature lag for DPL model for tissues in literature. To confirm 
investigation the experiment has to be evaluated. Future work will be focused on introduce these models for experimental 
data. 
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