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Abstract 

In this study, we delve into the applications of infrared based diagnostic system for early diagnosis of breast 
cancer or symptomatic patients. We used low-rank sparse Non-negative matrix factorization (NMF) to select the main 
bases of the thermal images to determine the subsurface thermal heterogeneous patterns in these sets. For that, 55 
participants for infrared breast screening selected from Database for Mastology Research (DMR) dataset with symptomatic 
and healthy participants. We calculate five derived properties of the breast area (contrast, correlation, dissimilarity, 
homogeneous, and energy) using thermal level co-occurrence matrices (TLCMs) and train a logistic regression to stratify 
between healthy and symptomatic patients. 
We compared the ability of sparse-NMF to the state-of-the-art thermographic approaches such as principal component 
analysis/thermography (PCT), candid covariance-free incremental principal component thermography (CCIPCT), Sparse 
PCT, non-negative matrix factorization (NMF). Results indicate significant performance for Sparse-NMF (DMR: 74.1%). 
The results indicate considerable performance sparse-NMF, which conclusively indicates promising performance in terms 
of the accuracy and the robustness as a confirmation for the outlined properties. 

 

Keywords: Breast cancer screening, infrared imaging modality, computer-aided diagnosis (CAD), Sparse non-

negative matrix factorization.   
 
 
 
 
 

1. Introduction 
According to the world health organization (WHO), cancer is a foremost cause of death worldwide, accounting for 

an overall estimation of 9.6 million deaths in 2018, where breast cancer considers being the most common cancer with 
lung cancer having 2.09 million cases, which leads to 627,000 deaths [1,2]. Despite a far better survival rate versus lung 
cancer, early detection of breast abnormality creates a tremendous effect on prognosis and course of treatment. Breast 
screening usually performs by mammography (which in X-ray (ionized imaging modality)) [3,4] or magnetic resonance 
imaging (MRI), and relatively expensive. With current developments in infrared thermography, breast screening using 
dynamic thermography seemingly a great alternative imaging modality for early diagnosis of breast abnormality [5,6]. 
Thermal images captured using dynamic protocol after air stream cooling the breasts, 20 sequential thermal images were 
taken within the intervals of 15 seconds during returning the patient’s body to the environment (or body) equilibrium 
temperature. Then, several other images were taken from different angle orientations [5,6].  
Matrix factorization techniques are known to be very effective in detection of subsurface heterogeneous thermal patterns 
in sequence of thermal images [7-15]. Some well-known matrix factorization methods such as principal component 
analysis/thermography (PCA/PCT) [10], and non-negative matrix factorization (NMF) [7] have been used for past several 
years in different applications.   
This paper describes an application of sparse non-negative matrix factorization (Sparse NMF) to compress thermal 
sequence images and thermal-driven biomarkers for infrared based breast cancer screening to determine the patients with 
breast cancer symptoms. Moreover, clinical information and demographics for 55 patients also gathered for each patient. 
The original assessment for these patients took place using mammographic imaging modality with an experience 
radiologist that used as gold standard for our analyses. 
In the next section, the methodology of the approach will be briefly described by applying Sparse-NMF analysis for 
thermography. The study population and the experimental and computational results are then presented in Sections 3 and 
4, respectively. Finally, the conclusions are presented in Section 5. 
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Fig. 1. Workflow. An application of low-rank matrix approximation using sparse NMF and thermal feature 
extraction to determine the breast abnormality within the cohort. 

2. Sparse NMF for an infrared system 
 

Let 𝐼 is a sequence of thermal images where each image has spatial dimension of 𝑁 × 𝑀. The 𝑋 is the input data 

constructed by appending a set of vectorized images, 𝑋 =  {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑡}.  
The PCT [10], using singular value decomposition (SVD), decomposes the input data, 𝑋, to 𝑈Σ𝑉𝑇, where 𝑈 and Σ represent 
the eigenvector (basis) and eigenvalue (coefficient) matrices sorted on descent order. The low rank matrix approximation 
of the input thermal sequence obtains by selecting the higher eigenvectors, which represent the defective patterns in the 
data. We select 𝑘 first initial bases and reshape them back to make eigen-images. In the sparse PCT [11,12,13], these 

bases are optimized by penalty terms to have sparse matrix as its outcome (bases select from the basis matrix 𝑈). Like 

PCT, the NMF algorithm can be presented by a linear combination of 𝑘 basis vectors to reconstruct the data, 𝑋. NMF is 
comparable to the PCA decomposition yet the PCA’s basis vectors can be negative.  
Denoting an observation matrix, input data 𝑋, having t-dimension has basis vector of 𝐵 =  {𝛽1, 𝛽2, 𝛽3, … , 𝛽𝑡}, and 𝐴 is called 

the linear combination coefficient, and the entire elements of data (𝑋) can be presented by the following matrix 
approximation: 

𝑋 = 𝐵𝐴                      𝑠. 𝑡.    𝐴 ≥ 0 , 𝐵 ≥ 0   (1) 
 

where 𝑋 ∈  ℝ𝑀𝑁×𝑡
+ , 𝐴 ∈  ℝ𝑡×𝑡

+ , and 𝐵 ∈  ℝ𝑀𝑁×𝑡
+  or with ℓ2 equation that provides Euclidean distance [16,17]: 

 

min
𝐵,𝐴

𝑓(𝐵, 𝐴) =  ‖𝑋 − 𝐵𝐴‖2    𝑠. 𝑡.    𝐴 ≥ 0 , 𝐵 ≥ 0  (2) 

 
NMF assumes that matrices 𝑋, 𝐵 , and 𝐴 are not negative, but when the data matrix is unconstrained (i.e. there will be a 
chance of mixed signs exist among the matrices) The aforementioned minimization problem does not have concurrent 
convex property for both matrices, 𝐴 , 𝐵, whereas the problem is convex for each matrix discretely. Many researches have 
proposed ways and optimization solution such as: GD algorithm and NNLS by Paatero and Tapper [18], multiplicative 
algorithm by Lee and Seung [16], a computational improved GD algorithm, and modified alternating non-negative least 
squares (ANNLS). To compensate the uniqueness of the decomposition and enforcing a representation of basis 
sparseness constraints are proposed for NMF [19]. A ℓ1 norm penalty term has been introduced by implementing the 
following equation: 

𝐶𝑆𝑝𝑎𝑟𝑠𝑒𝑁𝑀𝐹 =
1

2
‖𝑋 − 𝐵𝐴‖𝐹

2 + 𝜆‖𝐵‖1   (3) 

Let ‖𝐵‖𝑝 is the ℓ𝑝-norm of 𝐵 given by 𝐿𝑝 =  (∑ ‖𝐵𝑑,𝑚 ‖
𝑝

𝑑.𝑚 )
1/𝑝

 similar to usual ℓ1 penalty term to imitate the ℓ0 behavior 

[20] to calculate 𝐵 for convex 𝐴. It is the unconstrained least squares minimization with ℓ1-norm constraint, also referred 

as least absolute shrinkage and selection operator (LASSO) [21]. The solution for all values of 𝜆 achieves through 
applications of the least angle regression and selection algorithm (LARS) [22]. Similar to Sparse PCT, low rank sparse 
NMF is obtained by selecting 𝑘 bases correspond to highest coefficients. Having k highest bases, we manually select the 
best representative of thermal sequence. 
  

10.21611/qirt.2020.146



 

15th Quantitative InfraRed Thermography Conference, 6 – 10 July 2020, Porto, Portugal 
 

 

 3 
 

2.1 Thermal level co-occurrence features 
Statistical analyses were performed to measure the heterogeneity of the breast area using texture analyses. 

Having thermal measure encoded in the grey level intensity, the grey (thermal) level co-occurrence matrices (TLCMs) of 
the breast area as our region of interest (ROI) was calculated [23]. For each patch, TLCM with a horizontal offset of 4 (two 

distances (0,1) and two angles [0,
π

2
]) is computed. Then, two properties, dissimilarity and correlation, of the TLCM matrices 

are computed. Using the TLCM information, many analyses were conducted to measure the level of contrast, dissimilarity, 
correlation, energy, and homogeneity among the pixels in the ROI using following equations: 

 

Contrast: ∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)2 𝑙𝑒𝑣𝑒𝑙𝑠−1
𝑖,𝑗=0 , Dissimilarity: ∑ 𝑃𝑖,𝑗  |𝑖 − 𝑗|𝑙𝑒𝑣𝑒𝑙𝑠−1

𝑖,𝑗=0 , Homogeneity: ∑
𝑃𝑖,𝑗

1+(𝑖−𝑗)2
𝑙𝑒𝑣𝑒𝑙𝑠−1
𝑖,𝑗=0  , ASM: ∑ 𝑃𝑖,𝑗

2  𝑙𝑒𝑣𝑒𝑙𝑠−1
𝑖,𝑗=0  

Correlation:   

∑ 𝑃𝑖,𝑗 [
(𝑖−𝜇𝑖)(𝑗−𝜇𝑗)

√(𝜎𝑖
2)(𝜎𝑗

2)
] 𝑙𝑒𝑣𝑒𝑙𝑠−1

𝑖,𝑗=0    (4) 

 
We stratified the participants based on these properties and compared to ground truth data provided by based on 
mammography information. A logistic regression model trained and tested on the study population and discriminates 
symptomatic versus non-symptomatic participants.  

 
3. Study population 

55 participants for breast screening with healthy (with/without symptoms) and sick (diagnosed by mammographic 
imaging) conditions were analysed. The median age in our study sample was 61 years, with 28 (51%) Caucasian, 15 
African (27.3%), 11 Pardo (20%), 1 Mulatto (1.8%) women, and 18 with history of diabetes in their families (32.7%) and 9 
under hormone replacement (16.4%). All patients had IR images obtained by following acquisition protocol: images  have 
spatial resolution of 640 x 480 pixels and were  captured  by  a  FLIR thermal  camera (model  SC620) with sensitivity of 
less than 0.04ºC range and capture standard  −40ºC  to  500ºC [5,6]. Table 1 shows the clinical information and 
demography of the cohort. 

 
 
Table 1. The clinical information and demographics of the database for mastology research is presented. 
 

DMR - Database for Mastology Research   

Age Median (±IQR) 61 (27,87) 

Race Caucasian 
African 
Pardo 
Mulatto  

28 (51%) 
15 (27.3%) 
11 (20%) 
1 (1.8%) 

 

Diagnosis1 

 

Healthy2 

With symptoms 
Without symptoms 

Sick3 

Unknown 

24 (43.6%)  

9 (16.4%) 
15 (27.3%) 

28 (51%) 

3 (5.4%) 

 

Family history 

 

Diabetes 

Leukemia 

None 

18 (32.7%) 

1 (1.8%) 

36 (65.5%) 

Hormone therapy (HT) Hormone replacement 

None 

9 (16.4%) 

46 (83.6%) 

1 This diagnosis performed with mammography as ground truth in this Dataset. 
2 Healthy term is used as non-cancerous patients, but might have symptoms (symptomatic). 
3 We use the term “sick”, which includes different types of breast cancer patients diagnosed by mammographic imaging. 
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4. Results 
The Sparse-NMF were showed statistically significant separation of the two groups of participants (p = 0.02) when 

split on contrast based TLCM (Figure 2) using Kurskal Wallis test. The Sparse-PCT, PCT, CCIPCT, NMF-nnls were not 
showing strong stratification ability, as they were not significantly discriminated (p > 0.1). The NMF-gd showed slight 
separation strength, although was not significant (p = 0.09). Plotting of participants based on TLCM properties also showed 
potential separability between the groups (Figure 2.a), which followed the results of boxplots for separating participants 
(Figure 2.b-d).  

 

 
Figure 2. (a.) represents 3D views of grouping using TCLM’s properties. The results of stratification among 

participants into symptomatic and non-symptomatic groups for Sparse NMF, sparse PCT, PCT algorithms are presented 
by boxplots and Kurskal Wallis test (b-d).  

 
To examine the hypothesis that the thermal heterogeneity can be used as a biomarker to stratify among participant, a 
logistic regression model fitted for multivariate covariates (contrast, dissimilarity, correlation, homogeneity, and energy), 
and resulted 74.1% accuracy for Sparse-NMF, respectively. The two highest accuracies were belonged to NMF-gd and 
Sparse-PCT with 81.5% and 79.6%, respectively. The CCIPCT and PCT were both show 75.9% accuracy. The receiver 
operating characteristic (ROC) curves using different factorization algorithm are presented in Figure 3. 
 

 
Figure 3.  The ROC graph for different matrix factorization approaches are presented for multivariate covariates 

logistic regression binary classification (abnormal or healthy participants). 
 
 

5. Conclusions 
This study proposed a comparative analyses and new applications of sparse NMF algorithms in infrared 

diagnostic system. We applied the approaches to measure thermal heterogeneity in breast cancer screening test (DMR). 
We compared the appropriateness of these approaches to the similar state-of-the-art thermographic methods such as 
PCT, CCIPCT, Sparse PCT, and standard NMF-gd and NMF-nnls among dissimilar thermal datasets. The results were 
indicated significant performance of Sparse NMF in preserving thermal heterogeneity to discriminate between symptomatic 
and healthy participants (accuracy of 74.1%). As future work, some affords should be done to substitute the manual 
selection of the most efficient basis from the low-rank approximation with an automatic selection. In addition, an expansion 
of the validation set to a larger infrared imaging cohort can further confirm the strength and pitfalls of these approaches.  
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