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Abstract 

In this work, the Hilbert-Huang transform (HHT) is utilized to improve the non-destructive testing based on 
thermographic data and enhance the defect detection of materials. In previous studies, HHT has been proven to be 
powerful for signal processing and analysis in 1D time series. Its generalization to 2D and 3D Euclidean space has also 
demonstrated the widespread utilizations of HHT. The authors performed experiments on a mosaic sample with defects 
deliberately introduced. By using the proposed method, we successfully extracted informative defect signals out of noisy 
raw thermographic data and provided accurate yet more intuitive testing results. 

1. Introduction 

Non-destructive testing (NDT) techniques have gained popularity for the assessment of high-value materials. 
Pulsed thermography (PT), an NDT technique, is favored for the sake of its convenience and rapid detection. However, 
the PT results are often contaminated by undesirable noises and measurement backgrounds which cover the defect 
information. To solve this problem, the Hilbert-Huang transform (HHT) has drawn our attention. With the integration of 
empirical mode decomposition (EMD) and Hilbert transform, HHT has demonstrated its capability to handle non-stationary 
and non-linear signals in the one-dimensional (1D) data processing. Herein, the authors proposed a generalized version 
of HHT to the 2D Euclidian space, which makes it suitable for thermographic data processing. The proposed HHT algorithm 
consists of two key elements: (1) the multi-dimensional ensemble empirical mode decomposition (MEEMD) and (2) the 
Riesz transform (RT). It is reasonable to use MEEMD to decompose raw thermographic data into a finite numbers of 
Intrinsic Mode Functions (IMFs) where each IMF represents features of different frequency mode. In doing this, the 
informative defect signals can be extracted by focusing on some specific IMFs. Moreover, RT allows us access to the 
critical local information for further feature extraction, which reveals the subtle defect signals. In general, HHT provides us 
a solution to enhance the resolution of PT results without compromising the convenience of the NDT method.  

2. Methodologies 

2.1. Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD)  

MEEMD was developed to solve the problem of multi-dimensional data decomposition [1]. It inherits the 
powerfulness of EMD [2] in dealing with non-stationary and non-linear signals while adopting ensemble empirical mode 
decomposition (EEMD) as its basic tool to deal with intermittent signals. In EMD, a data series x(t) is decomposed into a 
finite number of IMFs corresponding to different frequencies, together with a residue r with a monotonic trend.  

𝑥𝑥(𝑡𝑡) =  ∑ 𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛 + 𝑟𝑟𝑛𝑛
𝑖𝑖=1            (1) 

The IMFs can be computed iteratively by a sifting process, which satisfy two requirements: (1) the upper and lower 
envelopes of the IMF are symmetry about zero and (2) the number of zero crossings and extremes are equal or differ at 
most by one. In EEMD, a “true” IMF is calculated as the average of the corresponding IMFs obtained from multiple EMD 
trials where different scales of white noise are added to the data in each trial. To process a two-dimensional signal, such 
as a thermal image, the MEEMD algorithm can be conducted by performing EEMD on each row of the image. In doing this, 
each row is decomposed into n IMFs and a residue. The 𝑖𝑖th IMFs from different rows are then combine to form a new 
image which denotes as 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖. After the preliminary decomposition, (𝑛𝑛 + 1) IMF and residue images are obtained. Then, 
EEMD is conducted again on each column of each IMF image and the residue image. At the end of the process, there are 
totally (𝑛𝑛 + 1)2 sub-images generated. In the last step, these sub-images are combined into (𝑛𝑛 + 1) component images as:  

𝐶𝐶𝑖𝑖(𝐼𝐼, 𝑏𝑏) = ∑ 𝑆𝑆𝑆𝑆𝑏𝑏𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑘𝑘(𝐼𝐼, 𝑏𝑏) + ∑ 𝑆𝑆𝑆𝑆𝑏𝑏𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗,𝑖𝑖(𝐼𝐼, 𝑏𝑏)𝑚𝑚=𝑛𝑛+1
𝑗𝑗=𝑖𝑖+1

𝑛𝑛+1
𝑘𝑘=𝑖𝑖        (2) 

where 𝐶𝐶𝑖𝑖  is the 𝑖𝑖 th component image ( 𝑖𝑖 = 1, 2, … ,𝑛𝑛 + 1 ), 𝐶𝐶𝑖𝑖(𝐼𝐼, 𝑏𝑏)  is the value of the (𝑖𝑖, 𝑗𝑗)  th pixel in image 𝐶𝐶𝑖𝑖 , and 
𝑆𝑆𝑆𝑆𝑏𝑏𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑘𝑘(𝐼𝐼, 𝑏𝑏) represents the value of the (𝑖𝑖, 𝑗𝑗) th pixel in 𝑆𝑆𝑆𝑆𝑏𝑏𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑘𝑘.  

2.2. Riesz transform  

Felsberg & Sommer et al [3] proposed the Riesz transform in 2001 and considered it as a generalization of the Hilbert 
transform. The monogenic signal is a representation derived from the generalization of the 1D Hilbert transform to a higher 
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dimensional signal space which is made possible via Riesz transform. The monogenic signal consists of real signal 𝑓𝑓 and 
two odd parts 𝑓𝑓𝑜𝑜1 and 𝑓𝑓𝑜𝑜2 derived from the Riesz transform. The Riesz operator is defined as:  

𝑅𝑅[𝑓𝑓(𝑥𝑥,𝑦𝑦)]
𝐹𝐹𝐹𝐹
�� =

⎩
⎪
⎨

⎪
⎧𝐼𝐼𝑜𝑜1 = �

𝑖𝑖 𝜔𝜔𝑥𝑥
‖𝜔𝜔‖

𝐼𝐼(𝜔𝜔), 𝜔𝜔 ≠ 0
0, 𝜔𝜔 = 0

  

𝐼𝐼𝑜𝑜2 =  �𝑖𝑖
𝜔𝜔𝑦𝑦

‖𝜔𝜔‖
𝐼𝐼(𝜔𝜔), 𝜔𝜔 ≠ 0
0, 𝜔𝜔 = 0

         (3) 

where 𝑓𝑓(𝑥𝑥,𝑦𝑦) represents the image data, 𝑅𝑅[ . ] is the Riesz operator, 𝐼𝐼𝑜𝑜1 and 𝐼𝐼𝑜𝑜2 are the frequency-domain representations 
of the odd parts of the monogenic signal, which are the Riesz transformed signals taken about the 𝑥𝑥 and 𝑦𝑦 axes, 𝜔𝜔 = [𝜔𝜔𝑥𝑥,
𝜔𝜔𝑦𝑦] is a two-dimensional frequency. The Riesz transform of signal 𝑓𝑓 can be further expressed in a three-element vector: 

𝑅𝑅(𝑥𝑥,𝑦𝑦) = [𝑓𝑓(𝑥𝑥,𝑦𝑦), 𝑓𝑓𝑜𝑜1(𝑥𝑥,𝑦𝑦),𝑓𝑓𝑜𝑜2(𝑥𝑥,𝑦𝑦)]           (4) 
Projecting the vector onto a spherical coordinate, the signal’s spatial phase is given by the angle 𝜙𝜙 which is the angle 
between the signal vector and 𝑓𝑓 axis. According to this geometry relationship, phase can be easily expressed by an arctan 
function while spatial frequency is the first derivative of the spatial phase. By this means, the understanding of the spatial 
phase and spatial frequency becomes conceptually simpler. Here, the spatial phase is defined along the direction in which 
the signal has the maximum variation. The spatial phase distinguishes the signal response areas from no response areas 
in the thermogram, while minimum intensity in original data corresponds to the maximum phase value. The spatial 
frequency depicts the border between two areas. In this way, defect features with relatively low intensity can also be 
extracted.  For a graphical illustration of phase and frequency, please refer to Figure 1.  

 
Fig. 1. An illustrative example of phase and frequency extracted from a sinusoidal grating 

3. Results 

Figure 2 shows the mosaic sample to be investigated. The proposed HHT-based thermography data analysis 
method was implemented to process the thermal image obtained from PT [4]. Using MEEMD, the image was decomposed 
into eight component images. According to the engineering understanding, it is known that the high-frequency images 
mainly contain noise, while the low-frequency images contain backgrounds. Therefore, only IMF4 (Figure 3) was used for 
further data processing. The subtle signal extrema of defects 𝐴𝐴,𝛽𝛽, 𝛾𝛾, which are difficult to identify in Figure 3, are captured 
by the RT’s frequency spectrum (Figure 4). Our results demonstrate that HHT provides an efficient and intuitive way for 
thermographic data analysis. 

 
Fig.2. Mosaic sample  Fig.3. IMF 4   Fig.4. Frequency spectrum of IMF4 

REFERENCES 

[1] Wu Z., Huang N., Chen X. The multi-dimensional ensemble empirical mode decomposition method. Advances 
in Adaptive Data Analysis.1(3): pp. 339-372, 2009. 

[2] Huang, N., Shen, Z., Long, S., Wu, M., Shih, H., Zheng, Q., Yen N.-C., Tung C. C., Liu, H. “The empirical mode 
decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis”, Proceedings of 
the Royal Society A: Mathematical, Physical and Engineering Sciences. 454: pp. 903-995, 1998. 

[3] Felsberg, M., Sommer G. The monogenic signal. IEEE Transactions on Signal Processing, 49(12): pp. 3136-
3144, 2001. 

[4] Yao Y., Sfarra S., Ibarra-Castanedo C., You R., Maldague X. The multi-dimensional ensemble empirical mode 
decomposition (MEEMD): an advanced tool for thermographic diagnosis of mosaics. Journal of Thermal 
Analysis and Calorimetry, 128(3): pp. 1841-1858, 2017. 

 




