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Abstract

The article describes an innovative concept of a single-pixel thermal camera based on compressing sensing and deep
learning image reconstruction. The proposed approach uses a deep learning network to reconstruct an image from sparse
data. The network architecture and preliminary results for various compression ratios are presented. Compressed data was
obtained using random and deterministic spatial modulation of thermal images. In this research the modulation was realized
from original thermal images by software means. The results presented in this paper were obtained for low-resolution 80x80
infrared images.

1. Introduction

Nowadays, modern thermal cameras mostly use an array of thousands of pixels to obtain high-resolution images. New
promising, low-cost approach to capture thermal images is SPI (Single-Pixel Imaging) based on Compressed Sensing (CS)
methodology [1]. An advantage of use CS algorithm is possibility to reconstruct of IR images in various spectrum ranges e.g.
LWIR (Long-Wave InfraRed) 8-12 µm or MWIR (Medium-Wave Infrared) 3-5 µm. It depends on the spectral sensitivity of the
thermal detector used in the IR camera [9]. Most of the Single Pixel Cameras (SPC) uses a sequence of random, Hadamard
or Fourier mask patterns, to filter and compress the scene, which total intensity is integrated by a single detector [1], [6].

In this research Convolutional Neural Network (CNN) was implemented using decoder architecture for image decom-
pressing. In his work, the spatial modulation of thermal images was simulated by a software modeling different shutters for
thermal scene compression. We propose to use different shapes of the shutter for data compression in form of the moving cur-
tains. This concept was already implemented and verified in Matlab environment using well-known in literature reconstruction
algorithm - L1 magic [1], [6].

Thermovision allows the registration of thermal radiation emitted by physical bodies. Each body that has its own
temperature higher than absolute zero (0K ≈ −273, 15◦C) emits infrared radiation. The most important element of each
thermal imaging camera is the infrared (IR) detector. The primary task of the IR detector is to convert infrared radiation into
an electrical signal. There are currently two main groups of IR detectors: bolometric and photon detectors [5]. An important
parameter of the infrared detector is its spectral range of absorption. Currently, most of infrared systems use two spectral
ranges: LWIR (Long-Wave InfraRed) 8 − 12 µm and MWIR (Medium-Wave InfraRed) 3 − 5 µm [5], [9]. Thermal imaging
cameras are expensive mainly due to the use of matrix infrared detectors and IR optics. Single-detector imaging is presently a
new alternative to matrix-based IR systems. Currently, it is a solution mainly for laboratory applications.

The preliminary research presents the results of simulations of an IR camera with a single detector. The use of a
single detector and dedicated spatial shutters in front is closely related to the measurement of sparse signals. In this article,
the CNN with decoder architecture and the L1-magic algorithm were used to reconstruct IR images from sparse signal. The
L1-magic algorithm is often used in the CS image reconstruction from incomplete measurements. As the sampling theorem
states, the signal can be recovered back when the sampling frequency is greater than twice of the highest frequency component
of the signal. It is not a case in Compressive Sensing measurements [1]. Using the CS method allows the signal or image to
be reconstructed from much small number of measurements below the Nyquist criterion. In order to reconstruct sparse signal
by using CS method it is possible to use different algorithms. In case of this research, the L1-magic algorithm was used, based
on minimizing the l1-norm [1].

The main purpose of the presented research was to use the CNN network with the decoder architecture to reconstruct
infrared images from the sparse vector. The concept of CNN was created several decades ago [3], [4]. It assumes the use of
an algorithm to train a specialized multilayer network. Currently, CNN learning systems are being used in image processing
on a large scale. Nowadays, many varieties of networks have emerged, that are a modification of the basic structure of the
CNN network [3].

2. Materials and methods

2.1 Single pixel IR camera

The figure 1 shows the principle of operation of the simulated SPC IR camera. The object emits infrared radiation.
Before the IR radiation is focused on the single detector using lens, it passes through the SLM (Spatial Light Modulator), which
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may be implemented as the curtain-type shutter proposed by the authors. Originally, the random mask patterns shutter was
mainly being used by the other researchers [1]. In result, the averaged radiation is measured by a single-detector, typically by
a bolometer or an IR photodiode. The measurements stored as the compressed data vectors are then processed to reconstruct
an IR image by the previously mentioned the L1-magic algorithm or by using CNN image reconstruction algorithm with the
decoder architecture - figure 2.

In the target single-pixel IR camera, the part of the proposed algorithms is planned to be implemented in a hardware
way using a FPGA chip. There are FPGA integrated circuits with several hundreds to even several millions logical modules and
memory elements, as well as multiple-bit adders and accumulators. In order to develop the system, the hardware description
languages such as VHDL or Verilog are used to configure the FPGA [7].

Fig. 1. Block diagram of the single-pixel IR camera

2.2 Convolutional neural network architecture

In this research, the autoencoder (AE) architecture was used - figure 2 [4]. The most important part of the
autoencoder is the sparse data vector sometimes called bottleneck, which contains the compressed knowledge representations.
The important part of the autoencoder is the decoder, which was used in the simulation carried out during this research. This
is a module that helps the network to "decompress" the knowledge representations and reconstructs the data back from its
original form.

Fig. 2. Autoencoder concept

The encoder was simulated by using two different shutters - one using the set of 4 curtains (vertical, horizontal,
diagonal and anti-diagonal) and the second shutter with many randomly distributed openings.
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As a result of the use of these shutters, the compressed vectors were generated. Appropriately modified shutters will
give a properly compressed vector with 475, 1000 or 2000 data samples. The use of the CNN decoder allows the image
to be reconstructed from a compressed vector. The decoder structure was implemented using open-source software Keras in
version 2.8.0 [10]. This is the library that provides effective Python interface for programing deep learning ]artificial neural
networks. The Keras toolbox works directly as an interface to the Tensorflow library and it has ready-made implementations
of frequently used modules in the machine learning [13]. In addition, it has the necessary features that have been used in the
implementation of the decoder. This library supports Convolutional Neural Network and it provides useful tools to implement
e.g.: activation functions, optimizers, dropout, batch normalization, and pooling. In the presented architecture of the decoder,
the ReLU activation function was used.

In order to estimate the results of the IR image reconstruction for each algorithm, it was assumed that there was no
need to use a physical spatial modulator for data compression. The compression was performed by a software using thermal
images. In order to obtain thermal images two IR cameras was used - 80x80 pixel system with a-Si detector Micro80Gen2 [11]
and 640x480 equipped with VOx Imager [12].

Fig. 3. Architecture of Decoder CNN Network with residual connections

The decoder architecture proposed in this research is shown in figure 3. It consists of conv2DT (transposed2Dconvolution)
and classical conv2D, flaten and dense layers, with local and global residual connections. Transposed 2D convolution layers
ensure the features’ up-sampling and helps final image generation.

Table 1. The structure of the network

Hidden layers No. Type of the layer Number of kernels
1 Dense Layer None
2 Reshape/flaten None
3 Conv2DTranspose Layer 128
4 Conv2DTranspose Layer 128
5 Convolutional Layer 128
6 Convolutional Layer 128
7 Convolutional Layer 128
8 Convolutional Layer 1
9 Flatten Layer None
10 Dense Layer None

Table 1 shows the types of layers used in the proposed CNN with their depth - the number of kernels (filters) used.
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2.3 Acquisition of thermal images for training

In order to acquire thermal images to train convolutional neural networks, a low resolution thermal imaging camera
µIR80 was used, made by the co-author of this article during diploma thesis [7]. This thermal imaging camera has the a-Si
(amorphous silicon) microbolometer detector with resolution of 80x80 bolometers [11]. The typical bolometer detector is a
square or rectangular matrix of bolometers connected internally to a readout circuit [11]. The IR camera is equipped with
f=1.9 mm lens. The size of the detector is 34 µm. It ensures the Instantaneous Field of View (IFOV) of about 18 mrad.

The infrared detector Micro80Gen is made in a BGA housing. Single ball diameter is 0.5 mm and ball spacing is 1
mm. The detector has 107 soldering pins. The use of BGA housing in modern microbolometric detectors means that a large
number of pins does not take up much space. The detector was soldered to the PCB using the WEP 853AA soldering station.
The maximum temperature of the detector housing without fear of damaging is ≈ 260◦C, according to the manufacturer’s
documentation [11]. This type of housing is also used in mobile phones, tablets and computers.

The size of the IR camera presented in figure 4 has the small size 25x39 mm. For this reason, such an infrared camera
can be used e.g. in UAVs (Unmanned Aerial Vehicles).

Fig. 4. Developed 80 x 80 bolometric cameras µIR80 (left), screen of the Micro80imager application (rigth)

Additionally, the high resolution, high-sensitivity thermal imaging camera VOx Imager was also used to generate
thermal images with better quality and enlarge the training dataset. This thermal camera was equipped with high-sensitive
640x480 V Ox microbolometer, manufactured by SCD SemiConductor Devices [12]. The camera sensitivity is less than 35
mK and the pixel pitch is equal 17µm. However, the training dataset uses thermal images with the low resolution of 80x80
pixels only. The C# application Convert80 was written using .NetFramework platform to cut out subimages with 80x80 pixel
resolution from 640x480 pixel images taken with VOx Imager as shown in figure 5. The dataset has been divided into the
training and validation subsets with 1000 and 50 thermal images respectively.

Fig. 5. Application Convert80 for generating training dataset from an IR image with the high resolution of 640x480.
The black box indicates the segmented area with the 80x80 pixels resolution
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3. Results and discussion

In order to assess objectively the decompressed IR images, the PSNR (Peak signal-to-noise ratio) parameter was
used to compare original and reconstructed thermal images. The PSNR measure needs Mean Squared Error - MSE to be
calculated first.

MSE =
1

N ∗M

N∑
i=1

M∑
j=1

([f(i, j)− f ′(i, j)]2) (1)

where: N, M - thermal image dimensions in pixels, f(i,j) - pixel value with coordinates (i, j) of the original IR image, f’(i,j) -
pixel value with coordinates (i, j) of the compressed IR image.

The PSNR coefficient takes a form:

PSNR = 10log10
L2

MSE
(2)

where L is the range of pixel values.
In the case of both used IR systems: the µIR80 camera and the VOx Imager, each pixel is stored as 16-bit data. In

consequence, L = 65536. Coefficient MSE is the mean square error between the reference and reconstructed thermal images.
Figure 6 shows qualitatively the difference of the reconstructed images using both algorithms: L1-magic and CNN-decoder.

Fig. 6. a) The original IR image taken by Micro80Gen thermal camera at 80x80 resolution.
b) The IR image reconstructed by the SPC using the CNN (475 randomly selected measurements)

c) The IR image reconstructed with using L1 - magic algorithm (475 randomly selected measurements)

The compression ratio for both reconstruction algorithms is approximately 7,42 %. As one can see, this is high
compression ratio but sufficient for reconstruction the original image. The reconstruction of the thermal images was performed
using the processor (CPU) - AMD EPYC 7301 16-Core Processor, with clock frequency 2.20 GHz. The time to reconstruct
the IR image using the CNN-decoder architecture is approximately equal to 2.3 s.

The table 2 shows the results of IR image reconstruction for different shutters using the L1 magic algorithm. The
best result was achieved for the Random2000 shutter. The PSNR measure is equal to 35 dB. The compression ratio for this
shutter is about

Table 2. Averaged reconstruction results for 10 validation IR images for L1-magic algorithm

Shutter type Compression rate, % PSNR, dB
Random475 7.42 23.173
Random1000 15,6 28.410
Random2000 31,2 35.081
Curtain475 7.42 21.105

Figure 7 presents the images reconstructed for different compression rates using classical L1-magic algorithm. The
expected conclusion is that the lower the compression rate, the better reconstructed image. The reconstruction results of the
same images for different compression rates using decoder-architecture CNN are shown in figure 8.
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Fig. 7. Results of reconstruction of a thermal images (80x80 pixels) normalized to (0 - 65535) scale for different compression
rates using L1 - Magic algorithm , (a,e,i) 475-element compressed vector, (b,f,j) 1000-element compressed vector, (c,g,k)

2000-element compressed vector, (d,h,l) - original images

The comparison of decompression results presented qualitatively in figures 7 and 8 as well as in tables 2 and 3 clearly
confirms the superiority of the classical L1-magic approach over the CNN implementation of compressed thermal image
reconstruction using SPC. The table 3 summarizes the results of IR images reconstruction for the same shutters with using
Convolutional Neural Network. The obtained results of the reconstruction using CNN architecture are much worse than in
the case of using the L1 magic algorithm. The best result od reconstruction for Random2000 shutter is ∼ 19 dB.

Table 3. Averaged reconstruction results for 50 validation IR images and using CNN decoder architecture

Shutter type Epochs = 1000 Epochs = 2000 Epochs = 5000
Random475 16.973 17.699 18.683
Random1000 18.581 18.732 18.514
Random2000 18.391 18.542 18.721
Curtain475 14.964 14.990 15.203

In the opinion of the authors, the presented research results are preliminary showing and confirming the possibility
of CNNs applications for decompression problem of data generated by SPCs. Despite the poorer results obtained with the
CNN method, the research seems promising and will certainly be continued.

According experience of the authors in the domain of artificial intelligence systems, the next step will lead to the
significant data augmentation for CNN training. The presented results were obtained for 1000 images for training only
and without any dataset augmentation. In addition, the transfer learning is planned in the future. The modification and
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Fig. 8. Results of reconstruction of a thermal images (80x80 pixels) on the normalized scale (0 - 65535) for different
compression rates using CNN (a,e,i) 475-element compressed vector, (b,f,j) 1000-element compressed vector, (c,g,k)

2000-element compressed vector, (d,h,l) - original images

optimization of CNN architecture will be considered as well.

4. Conclusions

The single pixel camera design makes it possible to build low-cost, low-power, small and high-quality imaging devices
for a wide range of applications (e.g. remote imaging, hyperspectral imaging or video acquisition). The SPC requires a special
optical setup consisting of a spatial light modulator and a single photodetector, which averages the incoming radiation. The
compressed sensing theory provides perfect theoretical framework for single pixel imaging. It is based on the use of random
SLM pattern and L1-minimization for image recovery. In order to reconstruct the infrared images, the autoencoder technique
was used. Autoencoders always consist of two main components. The first is the encoder that transforms the input data into
the compressed representation. In this research, the encoder was realized using a special software. In the next step of the
research, the real Spatial Light Modulator will be developed to obtain a compressed vector. The second element is the decoder,
the purpose of which is to reconstruct the IR images based on a compressed vector. In this research, the Convolutional Neural
Network with the appropriate architecture plays the role of the decoder. The Convolutional Neural Network architecture was
implemented using an open source machine learning framework - Tensorflow. The L1 magic algorithm was used for the purpose
of comparative image reconstruction. After reviewing the results, it turns out that the L1 algorithm gives better results than
image reconstruction using CNN . A physically constructed camera with a single detector can be applied to detect V OCs
(Volatile Organic Compounds) gases, mainly from hydrocarbon group e.g.(methan - CH4) or carbon dioxide (CO2).
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