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Abstract

Non-destructive testing and evaluation techniques are essential in structural health monitoring and safety control
in industry and aerospace. Among the different NDT techniques, pulsed thermography has demonstrated to be an effective
approach for the inspection of carbon fiber-reinforced polymer (CFRP). A signal processing technique called undercomplete
autoencoder (UAE) is explored in this work as a means to extract meaningful information for anomaly detection. The high
dimensionality typical of thermal data sequences have pushed researchers to study innovative approaches to reduce thermal
sequences to lower-dimensional data sequences that highlight the hidden anomalies in materials. The proposed approach is
a dimensionality reduction method that reveals anomalies and provides better visibility. In a comparative study with other
dimensionality reduction approaches such as PCT, UAE presents promising results on pulse thermography data.

1. Introduction

Carbon fiber-reinforced polymers (CFRPs), due to their excellent mechanical properties, are extensively applied in
structural engineering and aerospace. Features such as high strength and rigidity, low density, excellent damping properties, and
high resistance to impact make CFRP interesting in reducing the structural weight while durability and strength are increased;
and therefore, improving the structural efficiency. Since health monitoring of CFRP components and damage identification
plays a crucial role in service function and safety of the systems, an accurate and non-invasive prediction of the remaining life
service is always interesting. In-situ on-line health monitoring can provide safety and reliability of the structural components
and prevent catastrophic failure. Among non-destructive testing techniques, infrared thermography, which involves mapping
the surface temperatures, could be used to assess the damage state.

Pulsed thermography (PT) is a non-contact and full-field Infrared Non-Destructive Testing (IRNDT) approach based
on thermal heat transfer analysis during the cooling period. After external excitation, which consists of a very short thermal
pulse (down to ∼ 10−3s), the incident radiation delivered to the surface becomes a thermal wave that propagates by conduction
through the material. The infrared camera records the temperature decay during the cooling period. Subject to the presence
of discontinuity, depending on its material and thermal properties and depth, defects will be revealed at different times. The
deeper defects appear later with lower thermal contrast. In order to obtain quantitative information from thermal data, several
approaches have been proposed. Manipulating thermal data makes active thermography an attractive and powerful approach
for industrial control and maintenance purposes.

Between different IRNDT approaches, thermographic signal reconstruction (TSR) [1], pulsed phase thermography
(PPT) [2], and principal component thermography (PCT) [3, 4] have gained wide popularity in many fields. Thermal data
often contain high levels of noise, outliers, and distortions which can reduce the quality of the enhanced images. Having
an approach that is less sensitive to noise and applicable to other IRNDT approaches in order to improve defect detection
is always interesting. Saeed et al. [5] developed an automatic flaw detection and depth estimation via a convolutional
neural network (CNN) in tandem with a Deep Feed Forward Neural Network (DFF-NN) algorithm. The method is applied
to thermal images obtained from a pulsed thermography setup from a CFRP sample and can detect the defects accurately,
but the algorithm requires a complex and computationally intensive training process. Luo et al. [6] introduced a combined
transient and spatial deep learning architecture for defect detection. Deep cross-learning strategy-based segmentation models
to improve the contrast between defective and non-defective regions. Jie et al. [7] proposed a sparse moving window principal
component thermography (SMWPCT) method to enhance the distinction between regions with defect and defect-free regions
and eliminate the influence of noise and non-uniform heating generated by PT using CFRP sample. The authors claimed that
the proposed method is superior to several alternatives. Zhang et al. [8] introduced a neural learning-based approach to blind
source separation for defect detection on additively manufactured (AM) materials in pulsed thermography. They reported that
the internal calibrated defects of different sizes and depths were detected by merging artificial intelligence with photothermic.
Azizinasab et al. [9] proposed a method called the phase of transient response using the local reference pixel vector (PTR-
LRPV) to process pulsed thermography data for defect detection and depth estimation in CFRP. The authors stated that
the method works effectively in detection and depth estimation tasks and is comparable with state-of-the-art algorithms.
Prosvirin et al. [10] used the deep undercomplete denoising autoencoder for estimating the nonlinear function of the system
under normal operating conditions in their method for a blade rub-impact fault. Kraljevski et al. [11] employed unsupervised
machine learning with autoencoders for ultrasonic testing of adhesive bonding. Wei et al. [12] present an approach based on

License: https://creativecommons.org/licenses/by/4.0/deed.en

10.21611/qirt.2022.2022



16th Quantitative InfraRed Thermography Conference, 4 – 8 July 2022, Paris, France

stacked denoising autoencoder (DAE) to enhance the defective regions using pulsed thermography data. Application of deep
autoencoder for data enhancement and defect detection are presented in several research studies [13, 14]. Also, Kaur et al. [15]
developed a novel autoencoder-based thermography approach for subsurface defect detection and stated that their approach
provides better defect detection in terms of signal-to-noise ratio than PCT. This article proposes to utilize autoencoders for
the compression of thermal data. Autoencoders are a type of neural network in which the trained network replicates the input.
The trained autoencoder compresses and reconstructs input data based on a given training dataset. The rest of this article is
organized to progressively describe the application of an undercomplete autoencoder in pulsed thermography data. Section 2
briefly explains the mathematical basis of autoencoders and the parameters which define the performance.

2. Method and Materials

2.1 Undercomplete-autoencoder

Autoencoders [16] are an unsupervised neural network which are part of a larger family of representation learning
methods that can automatically leverage the neural networks to learn features from unlabeled data. These methods are
evolved to map the input data to an internal latent representation, then employed to produce output data similar to the input
data. The autoencoders were first developed for nonlinear dimensionality reduction. An autoencoder consists of two primary
elements, an encoder function h = f(x) and a decoder function which reproduces a reconstruction x′ = g(h) of the input.
Figure 1 shows the general schematic structure of an autoencoder. The encoder takes input data and maps it into a latent
encoding space, and then the decoder tries from this latent code vector to reconstruct the input data as accurately as possible.
Compared with the input data’s dimension, the latent space’s dimensionality can be either the same, larger or smaller. In the
latter case, the encoder carries out a dimensionality reduction during the encoding step. Such an autoencoder is named an
undercomplete-autoencoder. Dependency between input features is important for dimensionality reduction and reconstruction;
the correlation between input features can be learned, and the data from the encoder is projected into lower-dimensional
space. During the training of the autoencoders, the weights of the neurons are adjusted so that the loss function will yield
a minimum, and consequently, the output will represent the input in the best feasible way. The loss function L, such as the
mean squared error (MSE), penalizes g(f(x)) for being dissimilar from x, and also the model learns the most important and
relevant attribute of the input data. Mathematically speaking, h and r define as Equation 1 and the goal is shown in Equation
2 [17]:

h = f(Wx); r = g(Vh) (1)

min
W,V

1

2N

N∑
n=1

∥x(n) − r(n)∥2 (2)

If f and g are linear :

min
W,V

1

2N

N∑
n=1

∥x(n) − VWx(n)∥2 (3)

Fig. 1. The general schematic structure of an autoencoder mapping an input x to reconstruction x′ via latent code h. The
encoder f maps the input x to h and the decoder g maps h to x′.

The undercomplete autoencoder uses a linear activation function in combination with the mean squared error (MSE) loss
function and learns to span the same subspace as PCA. Depending on the application, all output of the decoder may not
be interesting and salient properties from the data are preferred. One of the possible ways is to employ undercomplete
autoencoders.

2.2 Principal Component Thermography

Rajic et al. [3] based on PCA, which tends to maximize the variance and projected onto a lower-dimensional linear
space, is called a principal subspace. The principal scores or empirical orthogonal functions (EOF) are representations of
complex input signals and present the most critical data variability.
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Mathematically, consider an observation matrix {xn} where n = 1, ..., N , and xn is a Euclidean variable with
dimensionality D [18]. The goal is to project the data onto a M dimension space where M < D. For the projection onto
a one-dimensional space (M = 1), the D-dimensional vector u1 can be considered. Each pixel xn is projected onto a scalar
value uT

1 . The variance of the projected data is given by:

x =
1

N

N∑
n=1

{uT
1 xn − uT

1 x}2 = uT
1 Su1 (4)

where S is the covariance matrix:

S =
1

N

N∑
n=1

(xn − x)(xn − x)T (5)

The appropriate constraint comes in order to prevent ∥u1∥ → ∞ for uT
1 Su1 maximization. To solve this problem, a Lagrange

multiplier is employed, which is denoted by λ1 and makes an unconstrained maximization of :

uT
1 Su1 + λ1(1− uT

1 u1) (6)

u1 must be an eigenvector of S, and to maximize the variance, u1 is set to the eigenvector with the largest eigenvalue λ1.
Briefly, PCA consists in evaluating the mean (x) and the covariance matrix (S) of input data and finding the M eigenvectors
of the covariance matrix corresponding to the M largest eigenvalues.

In the application of PCA over thermograms, defective and non-defective pixels provide different contributions to the
same EOF, and hence, it can be used to highlight the anomaly information.

2.3 Thermographic Signal Reconstruction (TSR)

Thermographic Signal Reconstruction is a popular method for the enhancement and analysis of thermographic se-
quences. This method involves fitting the thermogram by a logarithmic polynomial of degree n (Equation 7) and the com-
putation of the first and second logarithmic time derivatives (without generating additional noise). Shepard, in 2001 [19]
proposed to transform the problem to the logarithmic domain in order to compensate for some troublesome parameters such
as the presence of temporal noise due to the IR camera and data saturation immediately after the flash. The one-dimensional
surface temperature solution of the heat equation for a semi-infinite slab stimulated with a Dirac pulse can be expressed as
[20]:

T =
Q

e
√
πt

(7)

where t, Q and e are the time, the energy density at the surface, and the material effusivity, respectively. After applying the
natural logarithm from Equation 7, the logarithmic behavior is described by two terms; the first term that depends on e and Q,
and second one that depends on t, and acts as a straight line with slope -0.5 in the logarithmic space. In practice, logarithmic
data may deviate from ideal behavior due to different reasons e.g. nonlinear camera response and background radiation and
convection. Still, sound areas decrease nearly linearly, whilst defective regions depart from this behaviour at a particular time
(related to their depth). Equation 7 can be reformulated as [19]:

lnT (t) = a0 + a1 ln (t) + a2 ln (t)2 + ...+ an ln (t)n (8)

While TSR reduces the high-frequency noise in data like a low pass filter, the time derivatives of logarithmic time history
provide discrimination between defect and sound areas. As mentioned earlier, time derivatives can considerably reduce not
only the background noise but also the blurring effect and preserve the shape of the defects. Moreover, if either the thermal
diffusivity of the sample or the flaw depth is defined, the time at which the second derivative peak occurs can be used to
estimate the non-defined e value [21].

2.4 Data Acquisition

The experiments were carried out on an academic (CFRP) plate (30 cm × 30 cm × 2 mm) with 25 defects of
quadrangular Teflon inserts. In this academic sample the Teflon sheets inserted between plies varies from 0.2 to 1 mm, while
the lateral size varies from 3 to 15 mm. The defects specification are presented in Table 1, and depicted in the sample
schematic in Figure 2a.

In PT [22] inspection, the test specimen is exposed to a thermal pulse for 5ms using two flash lamps (6.4KJ/flash
(Balcar, France)); the thermal flux emanating from the specimen surface is captured by a cooled infrared camera (FLIR Phoenix
(FLIR Systems, Inc., Oregon, USA), InSb, midwave, 3–5 µm, Stirling Cooling) and spatial resolution of 640 × 512 pixels. A
frame-rate of 145 Hz was used to record the temperature profile in reflection mode (Figure 2b). Infrared images were taken
from a distance of 70 cm by the IR camera, which was perpendicular to the plate surface.
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Table 1. Defect specifications for the CFRP Plate.

Defect A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 D1 D2 D3 D4 D5 E1 E2 E3 E4 E5
Depth (mm) 1 1 1 1 1 0.6 0.6 0.6 0.6 0.6 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.8 0.8 0.8 0.8 0.8
Lateral size (mm) 3 5 7 10 15 3 5 7 10 15 3 5 7 10 15 3 5 7 10 15 3 5 7 10 15
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m
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D=3 mm
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Fig. 2. (a) CTA CFRP plate, where Z is the defect depth, and labels are used to identify the location of each defect; (b)
pulsed thermography setup. a, PC; b, IR camera; c1 and c2, left and right flashes; d, CFRP specimen.

2.5 Contrast-to-Noise Ratio (CNR)

The results of the IRNDT approach show the anomalies as a contrast or color variation in the thermograms which
are obtained from the methods. The contrast-to-noise ratio (CNR) is one of the suggested methods to quantify the results to
evaluate defect detectability. CNR is similar to signal-to-noise ratio (SNR), which is mostly used for electrical signal description
to evaluate the detectability or undetectability of defects. The CNR presents the contrast between the surface regarding the
defective region and its surroundings. Between different definitions of CNR, the more robust formulation against noise and
image enhancement operation [23] is used. The CNR can be determined by using Equation 9:

CNR =
S

N
=

| µS_area − µN_area |√
(σS_area

2+σN_area
2)

2

(9)

where S_area and N_area are the signal and noise regions above a defect and its neighborhood correspondingly. µS_area
and µN_area are the average levels of contrast in signal and noise areas, respectively; σS_area and σN_area are the standard
deviation of the contrast in S_area and N_area, respectively.

3. Analysis

The thermal maps are captured at 145 Hz sampling frequency for a duration of 15 seconds, leading to 3-D thermal
data that contains T= 2203 thermograms of M by N images (T× M× N). For further processing, the 3-D data sequence is
recomposed as a to a 2-D (T× M*N) matrix. Each row in this matrix is a thermal profile of each image pixel. As described in
Figure 3a, the autoencoder was trained over TSR data and in order to have comparative results, PCT approach was applied
over the pre-processed data. As far as implementation details regarding the training of the autoencoder are concerned, the
training of the autoencoder model is implemented using Pytorch library [24] on a PC with 56GB of RAM memory and an
Intel(R) Core(TM) i7-4820K control processing unit. Nonlinear activation functions–SELU have been employed at the encoder,
and the model is trained using mean-square-error (MSE) as the loss function. For the optimizer algorithm, we selected the
AdaGrad algorithm with a learning increment of 0.1 to adjust the learning rate. Other parameters included a batch size of 128
images and a number of epochs equal to 20. A mono-dimensional batch normalization layer is utilized to normalize the data
before being fed into the next layer, before training the data standardized by removing the mean and scaling to unit variance.



16th Quantitative InfraRed Thermography Conference, 4 – 8 July 2022, Paris, France

(a) (b)

Fig. 3. (a) Research flow-graph ; (b) Examples of reference and defect regions. The boundaries of the reference region is a
region with black stripes, whilst the defective region is the light blue area.

To evaluate the method quantitatively, the defective areas were labeled using LabelMe © [25]. From the border of the defective
region, 15 pixels are considered as a transient region, and from the boundaries of this area, 20 pixels are automatically counted
as a non-defective or sound area. Figure 3b illustrates the aforementioned regions so as to estimate the CNR score. The
average and standard deviation values for all labeled regions are obtained from Equation 9.

4. Results and Discussions

Using the proposed approach described in Section 2, raw thermographic data was pre-processed by TSR (significantly
reducing noise), and then the output data was used to train the UAE model. The first three obtained components from UAE
and PCT are shown in Figure 4. It is clearly evident from the figure that the defect visibility in all components from UAE
increased compared with PCT. The defects located at different depths reach the level of contrast to be clearly visible in a
single component. Contrast is a conventional metric to evaluate the saliency of an object in a scene. A region with higher
contrast compared to its surrounding is more distinguishable. Figure 5 shows the intensity variations along different horizontal
lines of an image that is chosen arbitrarily. The Figures indicate that the components can reveal most of the defects.
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Fig. 4. (1st row) These images present the first three components of undercomplete autoencoder. (2nd row) These images
present the first three components of PCT on raw data
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Fig. 5. Maximum CNR for defects as a function of defect depth for all data sequences
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Fig. 6. Gray level value variations in the UAE and PCT thermograms in the third component along the different lines. The
green and red lines show intensity values in UAE and PCT, respectively.

A quantitative comparison between UAE and PCT is presented in Figure 6 as a function of defect depth. The graph
indicates that UAE’s CNR scores in 13 over 25 cases (52%) have a higher value than the PCT results. The ratio of the
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improvement varies from 0.01 % to 39.67%. In 48 % of the cases PCT results provide an improvement which varies 0.18%
to 19.47%. In comparison to UAE results, PCT results provide an improvement which varies... This proposed processing
approach can be extended to other approaches of thermography methods in the future and and other properties can also be
investigated in order to make more improvements in terms of defect detection.

5. Conclusions

Enhancing defect contrast is always helpful in improving anomaly detection in pulse thermography. In this study, the
application of UAE on PT data was investigated. In the proposed approach, the extracted features from data are employed
to reconstruct new images with better anomaly visibility. Since UAE is a dimensional reduction method, a comparative study
with PCT was done to show the potential of the method in IRNDT methods. Results showed that the UAE provide CNR
scores higher than PCT, in 52% cases.
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