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Abstract

The method of thermographic network identification is investigated for its performance in defect detection using
a flat-bottom holes test sample. Thermographic measurements based on pulsed and step excitation are evaluated using
thermographic network identification and thermographic signal reconstruction. To determine the performance of the methods,
a sensitivity index is used as a measure of defect visibility. The comparison shows that thermographic network identification is
a competitive method for defect detection with potential for further optimization.

1. Introduction

Thermography is a well-established technique for non-destructive testing. In general, thermographic techniques can
be divided into two subgroups, namely active and passive thermography. While passive thermography observes the infrared
radiation emitted from an object on its own, in active thermography, the sample is heated with pre-determined patterns. Many
different heat sources, excitation modes, and evaluation algorithms are available which can be combined to create a wide range
of thermographic techniques [1]. Typical heat sources include halogen lamps, resistive heating, eddy-currents, and lasers.
Suitable combinations of excitation source and algorithm allow for defect recognition and classification in many application
fields as well as the measurement of material parameters such as layer thickness or thermal resistances.

Each evaluation technique available in thermographic non-destructive testing is based on a unique approach to
visualize and interpret the thermographic data. The method of principal component thermography, for example, looks at
the data from a statistical point of view. The thermal transient of a pulse-heated specimen is decomposed by singular
value decomposition using empirical orthogonal functions. These functions classify the characteristic variability of the data,
separating noise from signal [2]. Another example for an evaluation technique based on pulse-heating excitation is pulsed
phase thermography. In this method, the Fourier components of the signal form a basis for the analysis. From its real and
imaginary parts, the signal phase is calculated for each pixel of the thermographic image and visualized, for example for defect
detection [3]. A common evaluation technique remaining purely in the time-domain is thermographic signal reconstruction
(TSR). There, a double-logarithmic polynomial is approximated to the thermal transient. For defect detection, either the
evaluation of the resulting polynomial coefficients or the polynomial itself and its derivative are suitable [4].

The recently introduced method of thermographic network identification (TNI) [5] uses a different approach for the
analysis. It calculates a thermal equivalence network for each pixel in the thermographic sequence and analyses the network
parameters for defect detection. In TNI, the transient response of a device under test to a step in the heating power is evaluated.
The main result of TNI is the time constant spectrum. It is calculated for each pixel in the thermographic sequence. The
resulting spectra are combined to form images for the same time constant. The amplitude of a spectrum is converted to a
specific colour in the corresponding colour map representation. Defects are analysed by their impact on this spectrum. In
principle, using pulse heating for TNI is also possible. Ideally, the entire heating and cooling phase is recorded in this case.

The classification of visibility of image features is a typical problem in signal detection theory. A commonly used
approach is to use a sensitivity index. In this work, it is applied to evaluate the thermographic images obtained from pulse
and step excitation and the subsequent analysis. The sensitivity index is a dimensionless quantity to quantify the difference
between two distributions. The result of each method is analysed to find out to what degree each flat-bottom hole of the test
sample is visible. Expressed in decibel, the sensitivity index gives an objective measure of the detection performance for the
different methods.

In this work, the performance of TNI and TSR in defect detection is evaluated using a flat-bottom-holes board as a
test sample. The sample has 16 holes of different diameters and depths. Pulse and step heating measurements are performed
on the sample and evaluated using a wide range of variants from TNI and TSR. The used thermographic algorithms and the
evaluation methodologies are presented in detail. To guarantee an objective evaluation, the signal-to-noise ratio of each defect
is calculated based on the relative signal strength and variance. Using these results, the specific experimental challenges and
opportunities of TNI are discussed.
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2. Theory

2.1 Thermographic signal reconstruction

Thermographic signal reconstruction [6] is a commonly used and widely accepted evaluation technique, known for
its effectiveness and simplicity. It provides a significant improvement in the signal-to-noise ratio compared to the measured
raw data and is thus able to detect small and deep defects. Both pulse-heated and step-heated measurement series can be
analysed [4, 7]. In principle, both excitation variants can also be evaluated with TNI. This makes TSR an attractive method
for comparison with TNI. Typically, pulse excitation is used for TSR as it provides better results than step excitation [7].

In the following, a brief introduction to the main equations of TSR is given. The model underling TSR is a semi-infinite
homogeneous body, which is excited by an idealized Dirac pulse. The resulting thermal transient is analysed,

T (t) = T0 +
Q

e
√
πt

, (1)

where T0 is the initial temperature, Q the energy density, and e the thermal effusivity. Converting and transforming (1) into
a logarithmic form, z = ln(t), yields

ln(T (t)− T0) = ln(∆T (t)) = ln
(

Q

e
√
π

)
− 1

2
ln(t) = const.− 1

2
· z . (2)

In a double-logarithmic plot, this results in a slope of −1/2 for areas without defects. For short and long times, the thermal
transients observed over defective areas is equal to defect-free areas. For the time in between, the behaviour varies due to
thermal obstacles, which forms the basis for a TSR analysis. For the evaluation, the thermal transient is approximated by a
double logarithmic polynomial, i.e.,

ln(∆T (z)) ≈
N∑
i=0

aiz
i = TTSR(z) . (3)

For a defect-free area, a second-degree polynomial is sufficient for the approximation, as in this case the thermal transient is
almost linear. To map defects as well, polynomials of degree 4 to 11 are usually used [8]. For step excitation, the characteristic
slope is +1/2 at the beginning and increases to +1 in the further course. For details regarding TSR using step excitation, the
reader is referred to [4, 7].

2.2 Thermographic network identification

In thermographic network identification, the step response is characterized by the thermal impedance, Zth, in loga-
rithmic time, z = ln(t). To obtain the step response, the specimen is heated to thermal equilibrium at an elevated temperature.
Then, the heat source is turned off. The thermal impedance is calculated from the measured transient, T (t), and the initial
temperature, T0, via

Zth(t) =
T0 − T (t)

P
and a(z) = Zth(t = exp(z)) . (4)

If the heating power, P , is known, the thermal resistances and capacities of the sample are obtained exactly, given a suitably
one-dimensional heat path. For the evaluation in this work, P is set to unity as this does not affect defect detection. In a first
step of the evaluation, the step response, i.e. the thermal impedance in logarithmic time, a(z), is differentiated to obtain the
impulse response, ∂z a(z) = h(z).

The quantity used for defect detection is the time constant spectrum, R(ζ). It represents the different times scales
at which the temperature relaxation occurs. Thus, it is related to the thermal resistances and capacities of the subsurface
structure, i.e. the defects. Computationally, the time constant spectrum is connected to h(z) via a convolution equation,

h(z) =

∫ ∞

−∞
R(ζ) exp(z − ζ − exp(z − ζ))dζ = (R⊗ wz)(z) , (5)

where wz(z) = exp(z − exp(z)).
To extract the time constant spectrum from 5, Bayesian deconvolution is the most suitable method. This method

is based on Bayes’ theorem, a computational tool to quantify beliefs based on evidence. Here, the evidence is the impulse
response, h(z). The goal is to find the most likely guess for the time constant spectrum. Bayesian deconvolution achieves
this by solving an iterative formula using h(z) and wz(z). In the following, a brief description of the main iteration formula of
Bayesian deconvolution is given [9]. The starting point is Bayes’ theorem,

P (R|h) = P (h|R)P (R)

P (h)
. (6)



16th Quantitative InfraRed Thermography Conference, 4 – 8 July 2022, Paris, France

Ø1
2 

Ø4 Ø1
6 

4 

3 

5 

2 

10 

30
 

30
 

40
 

40
 

40
 

18
0 

Ø8 

30 30 40 40 40 

180 

Fig. 1. Schematic of the steel flat-bottom-holes sample, which was modelled on the test specimen from [10]. All sizes are
stated in millimeter. Defects are labelled according to the notation: diameter/depth, e.g., 16/2 denotes the top right hole.

The expression P (R|h) describes the probability that a hypothesis, R, is valid given that the evidence, h, is true. This
probability is related to the probability, P (h|R), via the prior probabilities of R and h, P (R) and P (h). In the present case,
the time constant spectrum, R(ζ), and the impulse response, h(z), are vectors. Therefore, the theorem is reformulated in
vector notation,

P (Ri|hk) =
P (hk|Ri)P (Ri)∑
j P (hk|Rj)P (Rj)

. (7)

Here, P (Ri) is identified as Ri, i.e., the i-th component of the vector R(ζ). In a few steps, the iteration formula (8) results.
P (hk|Ri) is identified as wz(z). In (8) it appears in matrix notation as Wki, which can be obtained by writing the convolution
(5) in matrix form. The more likely guess R(n+1)(z) is derived from its predecessor R(n)(z) via

R
(n+1)
i = R

(n)
i

∑
k

hkWki∑
j WkjR

(n)
j

. (8)

The initial value R(0)(z) can be taken as h(z), the end result should not depend on it. For thermographic network identification,
a few hundred to a few thousand iteration steps are recommended to achieve a balance between speed and accuracy.

3. Experimental details

The flat-bottom-holes sample used in this work has the form of a 180 mm× 180 mm× 10 mm steel plate (Figure 1).
The surface facing the camera is covered with black paint to enhance optical absorption as well as infrared emissivity. The
sample features holes of varying depths (2 mm to 5 mm) and diameters (4 mm to 16 mm).

Measurements are performed using an InfraTec ImageIR 8380S thermography system (InSb detector). For pulse
excitation, a Hensel EH Pro 6000 flash lamp is used. The sample is excited with a 6-kJ flash from a distance of approximately
70 cm. Due to the afterglow of the flash lamp, the first 20 ms after the pulse are discarded. For step heating, two different
excitation sources are used. First, a 500-W halogen lamp is used for heating from a distance of approximately 40 cm. To
reduce spectral overlap between the infrared detector and the halogen lamp, a PMMA filter is inserted between the specimen
and the lamp [7]. In a second measurement series, an LED infrared excitation source is used [11]. As the center wavelength
of the LED source is at 850 nm, there is no overlap with the thermography system. The specimen is excited from a distance
of 40 cm with an optical power of 55 W. The step thermographic measurements are recorded at a sampling rate of 140 Hz.
Then, the frequency is lowered to reduce the size of the measured data.
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Fig. 2. (a) Area selection for SNR calculation with the defect area in the inner circle and the reference area in the outer ring.
(b) Fitted Student t-distribution. The defect investigated is 16/2 and the data used are the fitted polynomial coefficients a1

for the pulse heated sample.

4. Defect classification

To determine the defect visibility objectively, a quantifiable measure is needed. In the literature, the signal-to-noise
ratio (SNR) is often used to classify whether a defect is visible [10, 12, 13]. An area containing the defect and a suitable
reference region are chosen to calculate the SNR. Here, it is calculated as the logarithmic representation of the root-mean-square
(RMS) sensitivity index, d′a, via [14]

d′a =
1

σRMS
|xdefect − xreference| =

√
2√

σ2
defect + σ2

reference
|xdefect − xreference| , (9)

where x and σ are the means and standard deviations of the analysed values in the corresponding areas. Typically, the
signal-to-noise ratio is expressed in decibel [12], i.e.,

SNRdB = 20 · log10

(
d′a

)
. (10)

Here, a defect is assumed to be identified unambiguously, if |xdefect − xreference| > 2σRMS. Expressed in decibel, this leads to
a SNRdB of at least 6 dB. The visual contrast of a defect is determined relative to its immediate surrounding. As the defect
regions are assumed to be known, each defect has its own reference region.

As an example, Figure 2(a) shows a defect with a diameter of 16 mm and a depth of 2 mm. The reference region
has twice the diameter of the defect. The corresponding distributions of the individual areas are shown in Figure 2(b). As a
calculation of mean value and standard deviation is quickly distorted by large outliers, a Student-t distribution is used here
to minimize this effect. These outliers are caused, for example, by defective pixels in the detector and/or badly converging
polynomial fits. The mean and standard deviation are determined from the model of the distribution. In case of Figure 2, they
amount to xdefect = −0.0890, xreference = −0.2372, σdefect = 0.0526, and σreference = 0.0336. In this case, the defect has an
SNR of

SNRdB = 20 · log10

( √
2√

0.05262 + 0.03362
|(−0.0890)− (−0.2372)|

)
= 10.5272 dB . (11)

According to the above described 6-dB criterion, the defect is recognized, which matches well with the visual impression in
Figure 2.
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Fig. 3. Average thermal transient of the reference and the defect area for defect 16/2 upon pulsed excitation (left) and LED
step excitation (right). For the fits, polynomials of 7th degree are calculated for each pixel of the area. The figure shows the
average values.

5. Evaluation

5.1 Thermographic signal reconstruction

For thermographic signal reconstruction, polynomials of 4th to 11th degree are tested. In the following evaluation, a
polynomial of 7th degree is chosen, as it provides the best results in terms of signal-to-noise ratio. As reference, the unaltered
thermal transient for each measurement is also evaluated according to the procedure described above. In Figure 3, the measured
thermal transients for defect 16/2 and the approximations by 7th-degree polynomials are shown for pulsed excitation (left)
and for step excitation with a LED lamp (right). A clear separation between the average thermal transients in the defect and
reference areas is visible. This difference is even more pronounced for pulse heating. Step excitation with a halogen lamp
results in a similar behaviour. A difference, however, is observed in the total temperature difference, which amounts for the
halogen lamp 18 K, while it is 14 K for the LED lamp.

As the data points are not evenly spaced in logarithmic time, an additional weighting is applied according to the local
data density. This is challenging for thermographic measurements based on step excitation, as sparse sampling for short times
leads to a relatively high impact of measurement noise. While this affects both TSR and TNI, polynomial least-squares fitting
is in particular sensitive to outliers. Furthermore, polynomials have a difficulty mapping threshold effects [15]. To alleviate
this effect, flat portions of pulse and step-heated thermal signals are truncated (Figure 3).

For non-destructive testing, usually the resulting polynomial coefficients, ai, the approximated thermal signal,
exp(TTSR), as well as the 1st and 2nd derivatives, ∂zTTSR and ∂2

zTTSR, are viewed [7, 8, 10] and serve as signal, x, in (9).
The derivatives are calculated as

d
dz TTSR(z) =

N∑
i=1

iaiz
i−1 and d2

dz2 TTSR(z) =

N∑
i=2

i(i− 1)aiz
i−2 . (12)

A moving average filter (3 × 3) is applied to all images. For defect classification, it is necessary to determine the mean and
standard deviation of each defect and reference area. For all TSR results (polynomial coefficients, thermal transients, and
derivatives) a Student-t distribution is fitted to the distributions. This distribution is more robust against outliers and is able
to model non-Gaussian phenomena.

Depending on the variant of TSR evaluation, a large number of images has to be evaluated. For example, in the
time sequence measurements (TTSR, ∂zTTSR), each time frame is evaluated for each of the polynomial degrees. Thus, an
automated evaluation is required and the procedure has to be robust. Challenges are posed by, for example, defective pixels of
the detector and badly converging polynomial fits. In addition, statistical fluctuations in the images are significant, i.e., due to
the high number of evaluations, sometimes defects are identified as false positive. Safeguards are implemented to double-check
the validity of a detection.
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Fig. 4. Median and interval between 20 % and 80 % of the cumulative distribution function for (left) the time constant
spectrum, R(ζ), and (right) the integrated time constant spectrum, R(ζ), for the reference and defect area of defect 16/2.

5.2 Thermographic network identification

Thermographic network identification is based on the equations given in Subsection 2.2. For details regarding the
algorithm, the reader is referred to [5]. The resulting time constant spectra are evenly distributed in logarithmic time and are
evaluated in the range between 1.5 s and 500 s. Smaller time constants are truncated, as the spectra show mainly noise there.
For τ greater than 500 s, no defects are visible.

For defect detection, the time constant spectrum is calculated for each pixel of the thermographic transient. The
amplitude of the time constant spectrum, R, serves as signal, x, in (9). Images are analysed for each value of τ , similar to
the analysis by TSR. In addition, the integrated time constant spectrum, R(ζ), is calculated via

R(ζ) =

∫ ζ

−∞
R(ζ)dζ . (13)

A moving average filter is applied to all images. Figure 4 shows (left) the time constant spectrum, R(ζ), and (right) the
integrated time constant spectrum, R(ζ), for defect 16/2. For defect classification in all TNI results, the mean values, x, and
standard deviations, σ, are determined using

x =
1

N

N∑
i=1

xi and σ =

√√√√ 1

N

N∑
i=1

(x− x)2 . (14)

This methodology is chosen, as the amplitude distributions of the time constant spectrum and the integrated time constant
spectrum have significantly fewer outliers and do not, in general, follow a simple distribution.

5.3 Results

All evaluation methods provide a huge number of images as result, which have to be analysed to determine the
best SNR for each defect. The SNR is calculated for each image independently, as described in Section 5. Note, that this
automatic evaluation is not perfect. In come cases, a human observer might disagree on the visibility of a defect. It might
happen that the maximum SNR is provided by a false positive detection, or, due to fluctuations, the maximum signal-to-noise
ratio is overestimated. Therefore, a moving average is applied to the sequence of SNR results. Figure 5 shows exemplarily
some visual impressions related to the different SNR. Table 1 collects the best SNR obtained for the various methods. The
results are colour-coded to guide the eye. Defects with an SNR smaller than 0 dB are considered to be not detected and
coloured in red. In this case, the mean values differ from each other less than the mean standard deviation, σRMS. Defects
with an SNR above 6 dB are considered to be detected and coloured in green.

When comparing the measured thermal transient, ∆T , for flash, halogen, and LED excitation, the defects are easier
to detect using flash excitation. This becomes obvious by comparing the SNRdB for the most noticeable defect 16/2 and
reflects a property of the experimental setup and the measurement method. However, the focus of this paper is to compare



16th Quantitative InfraRed Thermography Conference, 4 – 8 July 2022, Paris, France

11.38 dB 10.39 dB 1.28 dB 11.29 dB

-6.81 dB -12.05 dB -15.57 dB -14.08 dB

8.11 dB 6.39 dB -8.21 dB 7.86 dB

0.52 dB 1.92 dB -17.61 dB -1.51 dB

11.38 dB 10.39 dB 1.28 dB 11.29 dB

-6.81 dB -12.05 dB -15.57 dB -14.08 dB

8.11 dB 6.39 dB -8.21 dB 7.86 dB

0.52 dB 1.92 dB -17.61 dB -1.51 dB

0.0

0.2

0.4

0.6

0.8

1.0

T
T
S
R

in
ar

b.
un

its

11.18 dB 9.27 dB -8.41 dB 11.35 dB

-8.93 dB -13.37 dB -42.33 dB -4.48 dB

10.7 dB 7.7 dB 0.42 dB 10.45 dB

5.22 dB 1.96 dB -2.5 dB 1.64 dB

11.18 dB 9.27 dB -8.41 dB 11.35 dB

-8.93 dB -13.37 dB -42.33 dB -4.48 dB

10.7 dB 7.7 dB 0.42 dB 10.45 dB

5.22 dB 1.96 dB -2.5 dB 1.64 dB

0.0

0.2

0.4

0.6

0.8

1.0

TS
R

co
ef

fic
ie

nt
,a

3
,i

n
ar

b.
un

its

12.34 dB 10.81 dB 6.66 dB 11.95 dB

1.77 dB -5.67 dB -18.2 dB 0.75 dB

4.07 dB 5.57 dB 3.2 dB -11.37 dB

-3.1 dB -33.77 dB -3.4 dB 2.67 dB

12.34 dB 10.81 dB 6.66 dB 11.95 dB

1.77 dB -5.67 dB -18.2 dB 0.75 dB

4.07 dB 5.57 dB 3.2 dB -11.37 dB

-3.1 dB -33.77 dB -3.4 dB 2.67 dB

0.0

0.2

0.4

0.6

0.8

1.0

∂
z
T
T
S
R

in
ar

b.
un

its

12.52 dB 10.68 dB 4.28 dB 12.89 dB

-8.81 dB -19.57 dB -25.24 dB -18.33 dB

9.48 dB 7.91 dB 4.0 dB 8.67 dB

0.76 dB 0.11 dB -5.66 dB -15.6 dB

12.52 dB 10.68 dB 4.28 dB 12.89 dB

-8.81 dB -19.57 dB -25.24 dB -18.33 dB

9.48 dB 7.91 dB 4.0 dB 8.67 dB

0.76 dB 0.11 dB -5.66 dB -15.6 dB

0.0

0.2

0.4

0.6

0.8

1.0

∂
2 z
T
T
S
R

in
ar

b.
un

its

4.77 dB -2.86 dB -24.66 dB 7.22 dB

-1.14 dB -7.26 dB -6.92 dB -0.91 dB

4.34 dB -5.27 dB -16.91 dB 7.23 dB

1.16 dB -10.62 dB -14.31 dB 2.58 dB

4.77 dB -2.86 dB -24.66 dB 7.22 dB

-1.14 dB -7.26 dB -6.92 dB -0.91 dB

4.34 dB -5.27 dB -16.91 dB 7.23 dB

1.16 dB -10.62 dB -14.31 dB 2.58 dB

0.0

0.2

0.4

0.6

0.8

1.0

sp
ec

tr
um

,R
(ζ
),

in
ar

b.
un

its

8.62 dB 4.01 dB -5.81 dB 10.19 dB

0.68 dB -6.5 dB -12.34 dB 3.76 dB

6.31 dB 2.27 dB -17.42 dB 9.83 dB

4.13 dB -4.66 dB -7.24 dB 5.29 dB

8.62 dB 4.01 dB -5.81 dB 10.19 dB

0.68 dB -6.5 dB -12.34 dB 3.76 dB

6.31 dB 2.27 dB -17.42 dB 9.83 dB

4.13 dB -4.66 dB -7.24 dB 5.29 dB

0.0

0.2

0.4

0.6

0.8

1.0

in
t.

sp
ec

tr
um

,R
(ζ
),

in
ar

b.
un

its

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Maximum values of SNRs for pulse (flash lamp) and step excitation (halogen lamp). (a) 7th-degree TSR polynomial
(TTSR) using pulse excitation, (b) TSR coefficients (a3) of the 7th-degree polynomial, (c) TSR 1st derivative (∂z) of the
7th-degree polynomial, (d) TSR 2nd derivative (∂2

z ) of the 7th-degree polynomial, (e) time constant spectrum (R(ζ)) for step
excitation (halogen lamp), (f) integrated time constant spectrum (R(ζ)) for step excitation (halogen lamp).

evaluation methods. Nevertheless, the results achieved by each evaluation method depend on the quality of the measurement
data. When comparing results of different excitation methods, this has to be kept in mind.

Comparing both excitation sources for step excitation, the defects are visible more clearly using halogen excitation.
For TSR evaluation using flash excitation, the best results are provided by the 1st derivative of the polynomial. For step
excitation, the best results are obtained using the integrated time constant spectrum and the halogen lamp. A total of five
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Table 1. Best SNR values in decibel (dB) for each of the 16 holes, excitation source, and method as well as their average. The
holes are labelled according to the notation diameter/depth, both values in mm (Figure 1). Methods: measured temperature
transient (∆T ), TSR coefficients (ai), TSR polynomial (TTSR), their derivatives (∂z and ∂2

z ), corresponding logarithms and
exponentials (exp and ln), time constant spectrum (R(ζ)), and integrated time constant spectrum (R(ζ)). The colour coding
is a guide to the eye.

pulse excitation (flash lamp)
16/2 16/3 16/4 16/5 12/2 12/3 12/4 12/5 8/2 8/3 8/4 8/5 4/2 4/3 4/4 4/5 avrg.

∆T 9.0 6.8 1.9 -1.9 9.8 6.6 1.5 -0.9 8.1 3.5 0.1 -6.0 0.0 -4.7 -5.2 -5.2 1.5
ln(∆T ) 9.1 6.9 2.1 -1.3 9.8 6.6 1.6 -0.8 8.2 3.5 -0.0 -6.1 0.2 -4.3 -4.8 -5.8 1.5
TSR, ai 11.5 9.8 3.8 -0.4 12.3 9.0 4.3 0.7 10.4 6.6 0.4 -2.2 1.0 0.3 -2.5 -0.9 4.0
TTSR 11.6 9.7 5.8 -0.1 11.8 9.1 4.8 1.6 10.6 7.2 3.9 -5.1 2.6 -3.7 -4.4 -7.6 3.6
exp(TTSR) 11.3 9.6 5.9 -0.1 11.5 9.0 4.8 1.5 10.5 7.1 3.8 -2.0 2.4 -3.7 -4.1 -8.0 3.7
∂zTTSR 12.0 11.2 8.8 7.5 12.3 10.1 9.5 8.2 10.8 8.4 5.2 4.9 6.9 3.5 -0.6 -6.9 7.0
∂2
zTTSR 12.9 10.1 7.2 5.2 12.5 10.0 7.2 6.8 10.7 8.7 2.5 2.1 5.9 4.0 -1.0 -7.5 6.1

step excitation (halogen lamp)
16/2 16/3 16/4 16/5 12/2 12/3 12/4 12/5 8/2 8/3 8/4 8/5 4/2 4/3 4/4 4/5 avrg.

∆T 5.7 3.2 -1.2 -2.2 3.0 -0.1 -2.2 -6.6 -2.7 -4.3 -7.1 -8.4 -4.5 -4.8 -4.5 -2.4 -2.5
ln(∆T ) 5.6 3.1 -1.3 -2.2 3.0 -0.0 -2.3 -6.5 -2.6 -4.2 -6.5 -8.2 -4.4 -4.5 -4.7 -2.8 -2.4
TSR, ai -7.7 -10.7 -4.6 -9.4 -11.2 -9.9 -11.8 -14.7 -10.7 -5.5 -12.8 -14.8 -15.3 -9.4 -4.9 -3.6 -9.8
TTSR 8.2 6.7 2.8 1.5 6.2 3.1 1.8 -3.7 0.8 -0.8 -8.6 -9.5 -8.6 -7.0 -5.1 -2.6 -0.9
exp(TTSR) 8.1 6.7 2.9 1.4 6.1 3.2 1.6 -3.5 0.7 -0.9 -9.2 -9.4 -8.6 -7.0 -5.2 -2.6 -1.0
∂zTTSR 8.5 7.9 3.9 1.1 6.6 5.2 1.6 -3.2 2.4 0.6 -4.2 -7.3 -2.7 -5.6 -2.4 -4.6 0.5
∂2
zTTSR 6.2 4.8 1.6 -0.3 4.5 1.5 -1.3 -7.2 0.7 -2.3 -5.5 -9.9 -7.0 -6.2 -2.5 -10.4 -2.1

R(ζ) 7.1 7.1 3.1 1.2 5.7 4.4 1.6 -1.1 0.4 -1.9 -3.8 -5.1 -3.2 -4.5 -7.6 -2.7 0.0
R(ζ) 10.2 10.1 6.4 3.8 8.6 6.8 4.9 1.5 5.2 2.6 -2.6 -3.8 -4.2 -9.5 -7.1 -7.0 1.6

step excitation (LED lamp)
16/2 16/3 16/4 16/5 12/2 12/3 12/4 12/5 8/2 8/3 8/4 8/5 4/2 4/3 4/4 4/5 avrg.

∆T 5.0 1.8 -3.6 -3.5 2.2 -1.7 -4.8 -6.5 -1.8 -4.9 -7.0 -6.6 -2.9 -4.7 -5.5 -4.9 -3.1
ln(∆T ) 5.0 1.7 -3.6 -3.5 2.2 -1.6 -4.7 -6.4 -1.7 -4.9 -7.1 -6.4 -3.0 -4.3 -4.6 -5.0 -3.0
TSR, ai -5.9 -5.0 -3.2 -13.7 -9.7 -8.7 -11.9 -19.7 -6.0 -8.7 -6.8 -11.8 -6.0 -6.2 -2.5 -14.0 -8.7
TTSR 8.2 5.9 -0.1 -2.1 6.5 1.1 -1.4 -6.9 1.8 -6.6 -6.5 -7.5 -5.3 -7.0 -6.5 -10.5 -2.3
exp(TTSR) 8.0 5.8 0.0 -2.2 6.5 1.1 -1.4 -7.3 1.6 -6.8 -6.4 -7.5 -5.2 -7.1 -6.6 -14.1 -2.6
∂zTTSR 7.7 6.7 4.4 0.9 5.6 3.9 2.8 -4.0 2.9 -0.1 -4.2 -6.1 -5.7 -3.9 -2.8 -6.8 0.1
∂2
zTTSR 5.6 3.9 1.6 -3.5 3.0 -1.1 -1.9 -8.3 0.1 -5.1 -8.2 -9.8 -4.7 -2.8 -2.6 -14.1 -3.0

R(ζ) 4.8 1.8 -2.3 -4.1 -2.3 -4.3 -7.7 -6.4 -7.9 -7.4 -11.6 -9.8 -4.0 -4.6 -7.9 -4.2 -4.9
R(ζ) 7.9 4.9 1.7 0.4 2.9 -1.3 -3.7 -5.8 -7.2 -10.0 -10.0 -11.2 -2.0 -3.2 -8.4 -5.0 -3.1

defects are clearly identified and ten defects achieve signals above 0 dB. In all cases, using the integrated time constant
spectrum, R(ζ), is superior to R(ζ). The best result is achieved by the 1st derivative of the TSR polynomial with flash
excitation, recognizing 11 defects with 14 defects above 0 dB.
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6. Conclusion

In this work, thermographic network identification (TNI) and thermographic signal reconstruction (TSR) are used to
detect defects in a flat bottom holes reference sample. With the experimental setup used, TSR with pulse-heated excitation
yields the best results. As expected, it performs better than TSR with step excitation [7]. However, it has to be kept in
mind that for pulse excitation, the measured thermal transients show the defects more clearly than for step excitation. This
introduces a bias when comparing methods with different excitation types.

Despite its better turn-off behaviour, LED excitation performs worse than halogen excitation. One possible reason
is the lower excitation power, which is reflected in the lower total temperature difference. To overcome this issue, multiple
excitation sources will be used in future measurements. In addition, a temperature-controlled heat sink can be added on the
back of the sample to increase the heat flux though the sample. A higher spatial resolution of the infrared system has the
potential to increase the sensitivity towards the smallest defects. Due to the spectral overlap of the flash lamp with the infrared
camera, a TNI evaluation using flash excitation could not be realized.

For the case of step excitation with a halogen lamp, the integrated time constant spectrum, R(ζ), achieves better
results than all TSR variants. The high number of detected defects shows the potential of TNI, in particular when applied to
thermographic measurements with step excitation.
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