
 
16th Quantitative InfraRed Thermography Conference 

 

 

 1 
License: https://creativecommons.org/licenses/by/4.0/deed.en  

Temperature measurements of opaque materials at high temperatures using multi-
spectral methods 

by K. Ennass*(1,2,3), B. Remy(1,2), V. Schick(1,2) and J.Meulemans(2,3) 

1 Laboratoire Énergies et Mécanique Théorique et Appliquée, Université́ de Lorraine, CNRS, 2 Av. de la Forêt de 
Haye, 54500 Vandœuvre-lès-Nancy, France 
2 Laboratoire commun Canopée, CNRS, Université de Lorraine, Saint-Gobain 
3 Saint-Gobain Research Paris, 39 quai Lucien Lefranc, F-93303 Aubervilliers, France 
*(auteur correspondant : kamal.ennass@saint-gobain.com) 

Abstract: 

Precise and accurate temperature measurements during material manufacturing processes are crucial for 
obtaining the desired properties. In the context of this study, the metrological tool used for the measurements will be the 
multi-spectral infrared thermography. This non-intrusive tool is coupled with the Particle Swarm Optimization algorithm 
(PSO algorithm) for the simultaneous estimation of temperature and spectral emissivity variations in the case of opaque 
bodies by using an analytical model based on finite elements parametrization. 

1. Introduction: 

Temperature measurements are subject to disturbances due to numerous measurement biases and experimental 
noises. Reliable and robust high temperature measurements are essential for piloting industrial processes more finely and 
to reduce their energy consumption.  

In this work, the preferred metrological tool is multi-spectral infrared thermography, a non-contact measurement 
method. 

There are several previous studies carried out on the non-contact measurement of surface temperature, we can 
cite in particular broadband pyrometry, monochromatic pyrometry, bichromatic pyrometry (Krapez 2011 [1]), polychromatic 
(or multi-spectral) pyrometry (Araujo 2017 [2]; Coates 1981 [3]; Duvaut 1995 [4]; Gardner 1981 [5]). The biases of multi-
spectral methods (Krapez 2019 [6]) and optimal wavelengths for estimation (Rodiet 2014 [7]) have also been documented. 

In this paper, we particularly focus our attention on the effect of bias model for describing the spectral emissivity 
that leads to systematic errors on estimated values of unknown parameters. 

2. Methodology: 

A major challenge for temperature estimation is the lack of knowledge of the optical properties of opaque materials 
and their evolution as a function of temperature, wavelength and time, which can deteriorate the accuracy of the estimation. 

To avoid this problem, a multi-spectral method has been developed to estimate simultaneously the spectral 
emissivity and temperature by using the following analytical expression of the radiative heat flux based on finite elements 
formulation using P1 elements: 
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Where  𝜀𝜆𝑗
 is the spectral emissivity coefficient at 𝜆𝑗, 𝑁𝑗(𝜆) is the hat function, T is the temperature of the surface, 𝜆𝑖 is the 

wavelength and 𝐶1 = 2ℎ𝑐2 𝑊. 𝑚2  and 𝐶2 =
ℎ𝑐

𝑘
 𝑚. 𝐾 are the first and the second radiation constants, respectively. 

By using this method, the so-called “piecewise” functions are able to describe in high accuracy several types of 
emissivity variations by continuous functions and derivatives. Another advantage is that the estimated parameters all have 
a physical meaning defined in a finite domain, unlike previously developed approaches [8], which allows us to use 
constrained optimization algorithms. 
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The following objective function is then minimized using a minimization algorithm such as Particle Swarm 
Optimization (PSO) [9], by using MATLAB’s “particleswarm” toolbox, to find the optimal values of temperature and 
emissivity coefficients: 

𝐽(𝑇, 𝜀1, 𝜀2, 𝜀3, … , 𝜀𝑛) = ∑( 𝜑𝑒𝑥𝑝(𝜆𝑖) −

𝑛+1

𝑖=1

 𝜑(𝜆𝑖 , 𝑇, 𝜀1, 𝜀2, 𝜀3, … , 𝜀𝑛))2 (2) 

3. Results: 

Monte Carlo simulations were carried out to evaluate the algorithm’s robustness towards different initial points for 
unknown parameters. The figures below show the estimation errors for temperature versus the normalized norm of 

residuals 
𝐽

(𝑛+1)𝜑𝑒𝑥𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ obtained with PSO for the estimation of two different levels of temperatures and seven coefficients of 

emissivity evenly distributed in the spectral band [2𝜇𝑚, 4𝜇𝑚] using 8 wavelengths equally distanced in the same spectral 
band (the experimental heat flux is simulated). The “real” spectral emissivity is simulated using Drude’s model (which is 
used for pure metals’ emissivity [10]) varying between 1 and 0.6: 

We observe that varying initial points results in a dispersion of estimation precision. Empirically, the highest 
accuracy can be obtained at the maximum relative standard deviation of heat flux or residuals due to the model’s bias. The 
unbiased solution is obtained when the residuals curve is orthogonal with the biased model’s sensitivity matrix. Below this 
value, the algorithm is capable of minimizing the objective function or residuals past it’s optimal value by compensating the 
committed temperature error on the estimated emissivity coefficients. In this case, the estimated parameters are corrupted 
with a systematic error or bias. A theoretical explanation of this phenomena is currently being developed. 

Experiments regarding emissivity measurements of real materials are also currently being carried out using a 
broadband InSb camera that allows measurements between [1.5𝜇𝑚, 5.5𝜇𝑚], to be then used for validating simulation 
results. 
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Fig. 1. Estimation error for a true temperature of 
817K 

Fig. 2. Estimation error for a true temperature of 
1200K 
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