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ABSTRACT: 

Diabetic Retinopathy (DR) occurs as an effect of Diabetes, affecting the retina causing loss of vision. Worldwide 27% of 

the diabetic individuals are estimated to have DR, leading to 0.4 million blindness. As the DR population increases every 

year, early diagnosis is the need of the hour to avoid further progression of the disease thereby preventing blindness. In 

this work, DR diagnosis is performed using thermal images of the eye. According to earlier research on the eye, the 

increase in ocular surface temperature caused by dilatation is less in individuals with diabetic retinopathy than in control 

participants, making it a possible parameter for DR diagnosis. This imaging modality is non-invasive and less time 

consuming making it an easier diagnostic tool for large scale screening. For this work real time images are acquired from 

both the eyes of 20 DR participants and 16 control participants, with a total of 62 thermal eye images. The significant 

features from the pre-processed thermal eye images are extracted using Scale invariant transform and Gabor Transform 

methods. The extracted features are processed using optimal Machine learning algorithms to classify DR images from 

normal images. The diagnostic accuracy of the proposed tools is 96%. The results indicate that the IR thermal imaging 

system could be an efficient method for the non-invasive and non-contact detection of thermal anomalies in the eyes of 

patients with diabetes. 
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1. Introduction 

 

The human eye frequently exhibits manifestations of common diseases, with diabetic retinopathy, age-related 

macular degeneration, glaucoma, and cardiovascular disease being the most prevalent among them [1,2]. Diabetic 

Retinopathy (DR) is common in diabetic individuals with an incidence of up to 34.6 % globally [3]. DR, in its early stages, 

begins with parts of the retina being considerably higher in temperature than the rest of the eye. Blood flow will be disturbed 

and causes swollen, leaking, damaged blood vessels resulting in fuzzy vision. Early detection of diabetic retinopathy is 

crucial because it allows for timely intervention and treatment, which can help prevent the condition from advancing to 

more severe stages. Without any treatment, diabetic retinopathy can lead to irreparable impairment and eventual blindness 

[4]. However, manually detecting retinal changes is a challenging and time-consuming process. Therefore, the creation of 

a system with the ability to automatically assess the retina and monitor the disease's progression would be immensely 

beneficial for both patients and ophthalmologists. 

 

According to the worldwide clinical diabetic retinopathy disease severity scale the existence of diabetic retinopathy 

can be divided into five categories as None, Mild, Moderate, Severe, and Proliferative. Microaneurysms are also a defining 

feature of mild DR. The diameter of microaneurysms is typically between 10 and 100 m, which is smaller than the diameter 

of the major veins in the eye. Moderate diabetic retinopathy (DR) represents an intermediary stage that falls between mild 

and severe retinopathy [5,6]. The extreme case of DR is proliferative retinopathy. When the cells in the back of the eye 

receive insufficient oxygen, new blood vessels begin to form. They are brittle, and bleeding could result in a blood clot. 

Retina can become dislodged and cause irreversible eyesight loss [6]. 

Patients suffering from diabetic retinopathy reported a decline in ocular blood flow (OBF), and this decrease is 

found to be associated with the advancement of the disease. Ocular blood flow decline was seen in patients with diabetic 

retinopathy and was associated with the disease's progression [7]. Ocular surface temperature (OST) is a metric based on 

ambient temperature, body temperature, and infrared thermography-measured ocular blood flow. Sodi et. Al [8] analyzed 

a group of DR and healthy patients and observed a notable distinction between the two groups, with diabetic eyes 

displaying lower values of OST.  

Thermal Imaging is gaining recognition in the medical field, especially post-pandemic times [9,10], its applications 

ranging from fever screening to non-invasive tumour detection. Infrared (IR) thermography represents a temperature 

measurement method that doesn't require physical contact or intrusion, making it capable of presenting the current 

distribution of surface temperatures in real-time [11]. Thermography serves as an investigative method enabling the swift 

and visual representation of temperature variation across a broad surface through the utilization of infrared sensing, often 

displayed with a color-coded system [12]. It is even considered passive, as it doesn't involve the emission of potentially 

harmful radiation through the biological system; instead, it solely captures the natural body heat emitted by the subject. In 

the realm of medicine, thermography has been extensively employed for diagnosing conditions like breast cancer, 
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diabetes-related diseases, dentistry, as well as various eye conditions such as glaucoma and dry eyes, among others [13]. 

A highly innovative application of thermal imaging in the medical domain would be to detect the DR in its preliminary stages. 

The overall change in the temperature of the eye region can be an important contributing factor in diagnosing DR. 

Previous research on the eye has indicated that the increase in ocular surface temperature due to dilation is less 

pronounced in individuals with diabetic retinopathy compared to control participants serving as a diagnostic parameter for 

diabetic retinopathy [14]. The expansion of the pupil revealed a rise in OST among both control subjects and individuals 

with diabetic retinopathy. However, the extent of this increase was notably lower when compared to the control group.  It 

was concluded by Chandrasekar B et al [15] that the fluctuation in OST seen in patients with diabetic retinopathy during 

pre- and post-dilation experiments is an indication of pathology and can be employed as a diagnostic measure. 

2. Methodology 

 

The step-by-step process proposed for detecting Diabetic Retinopathy in ocular thermal images is shown in detail 

in Figure 1. At first, protocols for capturing ocular thermal images were devised, thus generating a database containing 

images from both healthy individuals (the control group) and Diabetic Retinopathy participants. Subsequently, the images 

undergo pre-processing, which includes resizing and cropping to isolate the region of interest. Image augmentation is then 

applied to enhance data diversity and quantity for training. Following this, feature extraction is performed, and the extracted 

features are fed into optimized Machine Learning algorithms for classification.  

 

 

Fig. 1. Methodology 

2.1. Data Acquisition 

 

The current study analysed the ocular IR images of the patients regardless of any ailments using Forward-looking 

infrared (FLIR) camera with 161,472-pixel resolution (464 x 348) resolution. Participants were briefed about the 

experimental procedure of thermal image acquisition, and written approval was procured from each participant before the 

study commenced. The camera was affixed to a tripod easel, maintaining a fixed gap of 50cm between the camera and 

the subjects, and the ambient temperature was controlled at 20℃. Prior to screening, the camera was calibrated to ensure 

accuracy and stability. To prevent outside infrared radiation from entering the room, all windows were covered or shielded, 

and the room temperature was maintained between 18℃ and 23℃. All of the volunteers for the control group self-identified 

as being in good health, not smokers, fairly active, and free of any previous cases of retinopathy, diabetes, or hypertension. 

 

A total of 72 images from both the eyes of 20 DR participants and 16 control participants were acquired. According 

to infrared thermography (IR), the data show a thermal change in the surface temperature as shown in Figure 2. 



 
(a)                                         (b) 

 

Fig. 2. Thermal image of (a) DR eye (b) Normal eye 

 

 Colour is a potent descriptor in IR images, and it is used to describe temperature variations [16,17]. Typically, 

hotter and colder regions are depicted in red and blue, respectively, with yellow and green representing the temperature 

differences between these extremes. A notable difference between the two groups was identified, as illustrated in Figure 

2, wherein the ocular surface temperature (OST) values were consistently lower in the eyes affected by diabetic 

retinopathy, represented by the green coloration. Within the cohort of examined DR eyes, a distinct thermographic pattern 

emerged, characterized by elevated temperatures at the peripheries and correspondingly lower temperatures at the central 

region which aligns with prior findings of thermographic profiles of ocular surface temperature. In contrast, the normal eyes 

exhibited a comparatively uniform high temperature, with only minimal temperature fluctuations observed at both the 

extremes and the centre denoted by the red coloration. 

 

2.2 Image Pre – Processing 

 

The images were initially resized to 500x500 before undergoing cropping to ensure that the machine learning 

model is fed with input images of uniform dimensions as shown in Figure 3. The original dimension of all the images in 

the dataset is 640x480 pixels, which makes processing them time-consuming [18]. To ease such execution complexities 

and prevent overfitting, resizing is performed. 

 

 
Fig. 3. Image Resizing 

 

Image augmentation techniques were accomplished to the acquired dataset to artificially expand the dataset in 

order to enhance the diversity and amount of training data. The augmented image data-set helps in a more efficient 

model training process with more data and accuracy [19,20]. Spatial augmentation techniques include – Flipping, 

Rotation, Shifting, Random noise and Gaussian blur were used. Specifically, the DR dataset was augmented to 800 

images, while the normal images underwent augmentation to a total of 850 images. 

 

The images were flipped vertically and horizontally. Rotating generates clockwise or counterclockwise rotated 

images by the provided angle - 45ᴼ,90ᴼ and 180ᴼ, repositioning objects in the image. A positive angle rotates an image 

in an anticlockwise direction, while a negative angle rotates the image in a clockwise direction. In this study, the images 

have been shifted vertically by 40 units in pixels to ensure that the region of interest is not lost. 

 

Gaussian noise is added to the images which is useful for regularisation and reduces overfitting. Gaussian noise 

is statistical noise with a zero mean normal distribution probability density function and standard deviation value. The 

standard deviation value was given as 180 which determines the intensity of the noise. Gaussian blur is added to the 

images that takes an image and kernel size as the parameters. The kernel size determines the degree of blur added to 

the image. As a result, an 11x11 pixel kernel size Gaussian blur is used. Therefore, a kernel size of 11x11 pixels produces 

a medium level of blur. Haar cascade method was employed that used the coordinates of the eyes to crop off the region 



of interest in an effort to automate the cropping procedure for the acquired image dataset. It required precise parameter 

settings to effectively detect eyes in the images. However, other methods such as histogram of oriented gradients and 

canny edge detection algorithm resulted in a significant number of incorrect detections, rendering the technique 

ineffective.  

 

Fig. 4. Automated Cropping using haar cascade algorithm 

 

2.3. Feature Extraction 

 

Feature extraction entails separating the visual details from an image and converting it into feature vectors that 

are stored in a specific feature database. The augmented images mentioned in the previous step are used to extract 

features in this study. The techniques used to extract the features include GLCM, SIFT, Gabor. 

2.3.1.  Extraction of GLCM Features 

The Gray level Co-occurrence Matrix (GLCM) calculates how often a pixel with gray-level value ‘i’ appears next 

to an adjacent pixel with the value "j" in a horizontal, vertical, or diagonal direction [21]. Thermal images are used to 

capture and display variations in temperature. GLCM helps capture and quantify these temperature patterns as texture 

features, making it easier to detect anomalies or irregularities in the IR data. Texture characteristics are determined by 

analysing the statistical distribution of observed intensity combinations at predefined positions in relation to one another 

within the image [22]. The second order GLCM statistical texture features on thermal images are obtained and following 

features are taken into consideration: Contrast, Energy, Correlation, Homogeneity. Contrast provides an assessment of 

the intensity contrast between a pixel and its neighbouring pixels across the entire image. Energy quantifies the sum of 

squared elements within the GLCM. Correlation offers an indication of the level of correlation between a pixel and its 

neighbouring pixels throughout the entire image. Homogeneity furnishes a metric for measuring the proximity of the 

element distribution within the GLCM to its diagonal. 
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where p(i,j) represents input image, L denotes the overall amount of utilised grey levels 𝜇h & 𝜇v = Mean, h & 𝜎v = 

Standard deviation for the elements of  co-occurrence matrices in the horizontal and vertical directions. 

2.3.2. Extraction of SIFT features 

SIFT (Scale-Invariant Feature Transform) is used to extract local features that remain invariant to variations in 

scale, rotation, and illumination in images. SIFT operates by detecting and characterizing keypoints within an image. 

These keypoints are chosen for their unique and stable appearance across different scales and orientations. Once 

identified, SIFT computes a feature vector for each keypoint, encapsulating its distinctive visual information. These 

feature vectors are not only highly discriminative but also resistant to common image transformations, rendering them 

indispensable for tasks that demand robust and accurate feature extraction [24]. 



 

 
Fig. 5. Keypoint Descriptors 

 

SIFT in Thermal Image Feature Extraction: Thermal images present a unique set of challenges in feature 

extraction due to their distinct characteristics, including variations in thermal radiation intensity and subtle temperature 

differences. SIFT proves to be an invaluable asset in this context. Its ability to capture and describe distinctive local 

features, regardless of thermal variations, equips it with the capacity to identify critical patterns within thermal images. 

The concept of scale space involves applying a range of Gaussian filters with varying values for the sigma 

parameter to the target image. The resulting plot is referred to as the Scale Space [25]. In choosing the Scale Space 

Peaks, the Spatial Coincidence Assumption plays a crucial role. This assumption means that an edge is considered a 

genuine edge if it is identified at the same position across different scales, represented by zero crossings in the scale 

space. The first step in the process involves computing the scale space selection and keypoint localization. The process 

of key point localization includes improving the key points that were chosen in the earlier step. Keypoints with low 

contrast, those that are shaky, and those that are perched on edges are removed. The values of the extrema are 

determined by computing the Laplacian of key points identified in the earlier stage as shown in Eq. 5. 
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𝜕2𝐷−1

𝜕𝑥2

𝜕𝐷
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    Eq. 5. DoG for keypoints 

The keypoint descriptor is created by expressing the 128 bin values as a vector. This vector is then normalised 

to unit length to make it invariant to scale and rotation changes. The resulting descriptor is robust to changes in lighting, 

contrast, and viewpoint. 

  Utilizing k-means Clustering for SIFT in Thermal Image Analysis: 

In the presented application, the power of SIFT for feature extraction in thermal images is harnessed. To further 

enhance its efficacy, k-means clustering is employed. SIFT descriptors and image patches are extracted at SIFT keypoint 

positions. The targets and related patches are represented as input for the SVM classifier, which operates on the cluster 

indices derived from the clustered SIFT descriptors [26]. Figure 6 explains the methodology involved in partitioning the 

SIFT descriptors into clusters, using k-means with a predetermined number of clusters, in our case, 100. This process 

effectively grouped similar SIFT descriptors, creating a compact representation of the image's visual content. The 

resulting clusters served as a visual dictionary, enabling us to succinctly describe the distinctive patterns and structures 

within thermal images. 

 

Fig. 6. Overview of the unsupervised feature learning.  



Thus, SIFT stands as a pivotal technique in the domain of image analysis, offering unmatched robustness in 

capturing distinctive features across various applications. In the context of thermal images, SIFT emerges as a potent 

tool, capable of extracting valuable information even in the presence of thermal variations. Our utilization of k-means 

clustering underscores the versatility of this method, promising advancements in the field of thermal image analysis and 

offering new opportunities for enhanced pattern recognition and understanding in the realm of thermal imaging. 

2.3.3. Extraction of Gabor Features 

Gabor filters are used to extract the textural micropatterns in an image like lines, edges and spots [27]. Gabor 

filters can be adjusted with various orientations and scales to extract spatial textural features in regions of interest, which 

could be highly helpful for detecting diabetic retinopathy. The Gabor transform combines a Gaussian window and a short-

term Fourier transformation in order to analyse data in the spatial domain. The 2D Gabor filter is a powerful sinusoidally 

modulated Gaussian function with a spatial response [28]. The sinusoidal input determines the direction of the filter, while 

the weights are supplied by the Gaussian wave. The Gabor filter can detect edges and extract features from images with 

high accuracy of certain frequency and orientation by fusing these two factors together [29]. The 2D Gabor filter has two 

components, a real part and an imaginary part, that represent orthogonal directions. These two components can be 

combined into a complex number, or used separately to analyse different aspects in an image, Eq. 6. 
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             The parameter λ determines the width of the strips in the Gabor function. Meanwhile, Ө dictates the 

orientation of the Gaussian envelope, ranging from 0 to 𝜋. As for ɣ, it represents the aspect ratio, which controls the 

height of the Gabor function. When ɣ is set to 0 (a high aspect ratio), the filter resembles a vertical slit (with Ө at 90 

degrees), while values close to 1 result in a nearly spherical kernel, resembling a Gaussian filter. The σ parameter is 

responsible for defining the spread of the Gaussian function. If a large σ is applied to small features, it may miss those 

features entirely, resulting in lower spatial resolution, and vice versa. Lastly, the parameter Ψ influences the symmetry 

of the Gabor filter [30,31]. 

 

To obtain texture features from an image, a bank of 2D Gabor filters are generated with variable parameters such 

as orientation and aspect ratio. In Figure 7, a 2D Gabor kernel is shown with different rotation angles. 

 
Fig. 7. A 2D Gabor bank with different Ө values 

In the thermal eye dataset, specific parameter values are chosen to optimize the Gabor filtering process. These 

parameters include setting the gamma values to 0.9 and 1 in order to obtain spherical kernels, which are effective for 

detecting the region of interest (eyeball). Additionally, the sigma values are set to 0.5 and 1, as using large sigma values 

on small features may cause important features to be missed. These Gabor filters are convolved with the input images, 

resulting in Gabor filtered images. Statistical features are derived from the images that have undergone Gabor filtering. 

Specifically, statistical moments are computed to depict the characteristics of the coefficient distribution function. These 

statistical moments encompass the first four orders: mean (𝜇) defines the average value of the distribution, variance (𝜎2) 

describes the measure of the spread of the distribution, skewness (𝛾) quantifies the distribution's asymmetry and kurtosis 

(𝛽) gives information about the peakedness of the distribution. These moments provide insight into the characteristics of 

the coefficient distribution derived from the Gabor filtered images that serve as concise descriptors of the distribution of 



Gabor filter coefficients, providing information about the texture and features present in the images. If P is the input image, 

then the first four orders of statistical features are computed by Equations (7) to (10). 

Mean (𝜇) = E[P]                                                           (7) 

Variance (𝜎2) = 𝐸[(𝑃 −  𝜇)2]      (8) 

Skewness (𝛾) = 𝐸[(
𝑃− 𝜇

𝜎
) 3]                                      (9) 

Kurtosis (𝛽) = 
𝐸[(𝑃− 𝜇) 4]

(𝐸[(𝑃− 𝜇) 2]) 2
                                (10) 

The aforementioned features are computed for a specific input image along with a set of Gabor kernels. This 

process systematically goes through different combinations of parameters to generate Gabor kernels. Consequently, each 

input image is convolved with these distinct Gabor kernels. As a result, for a single image, a total of 32 unique filtered 

images are produced as shown in Figure 8. 

 

Fig. 8. Feature extraction using a bank of 32 filters 

 Similarly, for a dataset consisting of 800 augmented DR images, this results in a total of 1280 Gabor-filtered 

output images and for a dataset comprising 850 healthy images, a total of 1024 Gabor-filtered output images are obtained 

which is fed into SVM. 

2.4. Support Vector Machine 

SVM is an effective binary classification machine learning technique. SVM excels in finding the optimal decision 

boundary within the feature space, allowing for the linear separation of two classes in a dataset. In actuality, the majority 

of data cannot be separated linearly [32]. The kernel functions enable the effective separation of non-linearly separable 

data. The feature points can be mapped to higher dimensional spaces using the kernel function. In this work, kernel 

functions with linear, polynomial, radial basis functions and sigmoid have been employed. 



SVM in Thermal Image Analysis: When applied to thermal images, SVM offers an invaluable means of extracting 

meaningful patterns and classifying thermal data effectively. Thermal images often contain intricate temperature variations 

and subtle nuances that require a powerful classification algorithm. SVMs prove to be well-suited for this task as they can 

discern intricate thermal features and distinguish between different thermal profiles with a high degree of accuracy [33]. 

The ability to perform well in high-dimensional feature spaces is especially advantageous in thermal image analysis, where 

thermal radiation intensity variations must be carefully considered. The SVM classifier's performance has been assessed 

by considering metrics such as accuracy, sensitivity, and specificity. Additionally, a receiver operating characteristic (ROC) 

curve has been generated  

3. Results and Discussion 

The performance of the suggested approach was assessed on an augmented dataset, as detailed in the 

methodology section. The dataset consists of 800 eye images with a clinical diagnosis of diabetic retinopathy and 850 eye 

images from control patients who did not exhibit any symptoms of the disease. Statistical methods such as GLCM, SIFT 

and Gabor parameters were extracted from the IR images of DR and control eyes. The extracted texture features are used 

as important parameters for SVM classification which are discussed in the following subsections.  

3.1. GLCM Features 

The GLCM characterizes the input's texture by calculating the number of pixel pair occurrences with a particular 

value in a specified spatial pattern. The size of the GLCM is dependent on the grey levels of the image. After forming the 

GLCM, statistical measures were calculated from the matrix. From the normalized GLCM, 4 features are extracted. The 

extracted features are shown in Table 1. 

Table 1. GLCM Features 

GLCM FEATURES NORMAL ABNORMAL 

Energy 0.1001±0.0071 0.108±0.0072 

Contrast 26.650±7.8635 28.192±12.1010 

Homogeneity 0.5609±0.0685 0.517±0.0938 

Correlation 0.9958±0.0020 0.9960±0.0020 

 

The aforementioned texture features are trained by SVM by applying mathematical equations known as the kernel 

approaches, by mapping the training dataset into a specialized kernel space. Four distinct types of kernel functions—linear, 

polynomial, radial basis function, and sigmoid—are employed. Particularly, the Radial Basis Function (RBF) kernel proves 

advantageous for transforming vectors into a high-dimensional feature space when non-linear transformations are needed. 

Additionally, the RBF kernel improves the overall accuracy, as demonstrated in Table 2.  

Table 2. Classification accuracy for GLCM texture feature extraction 

SVM Kernel Accuracy  Sensitivity Specificity 

Linear 58% 43% 7% 

Polynomial 54% 14% 87% 

Radial Basis Function 72% 73% 71% 

Sigmoid 55% 0% 1% 

 

The evaluation of the proposed system's performance is conducted through statistical metrics, including sensitivity 

and specificity. The receiver operating characteristic (ROC) has been generated. Figure 9 shows the ROC curve for the 

above four GLCM parameters. 
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Fig. 9. ROC analysis of GLCM - SVM kernels 

3.2. SIFT Features 

A combination of machine learning and feature extraction techniques to address the critical task of diabetic 

retinopathy detection. Leveraging the power of Support Vector Machines (SVM) in conjunction with the Scale-Invariant 

Feature Transform feature extraction method, experiments on a meticulously curated dataset consisting of 850 normal 

ocular IR images and 800 images affected by diabetic retinopathy was conducted. Initially, scale space selection and 

keypoints localization is computed as illustrated in Figure 10. 

 
Fig. 10. Keypoints localization for sample image 

The keypoint descriptor is then created and then normalised to unit length to make it invariant to scale and rotation 

changes. The Keypoints and Feature descriptors for a sample image is shown below in Figure 11. 

 

Fig. 11. Key Points and Feature descriptors for one image from the sample using OpenCV       

The use of k-means clustering to create a visual lexicon of SIFT descriptors using 100 clusters was one of the 

essential elements of the methodology that was described. A representative visual word dictionary was made possible by 

this technique, enabling the accurate characterization and differentiation of image regions according to their distinctive 

characteristics. In this study, we exploited the simplicity and efficacy of the linear SVM kernel for a simple yet robust 



classification strategy for the thermal imaging dataset, finally leading to accurate results. With precision scores of 0.96 and 

0.90, as well as recall scores of 0.91 and 0.95, for the "Normal" and "Diseased" classes, respectively, the results highlight 

the efficacy of this approach. Additionally, F1-scores and overall accuracy of 93% underscore the robustness of our 

proposed framework. 

3.3. Gabor Transform 

Augmented IR images, encompassing both normal and diabetic retinopathy (DR) cases, underwent processing 

with a Gabor bank, comprising eight distinct orientations, resulting in Gabor filtered output images. Subsequently, texture 

features were extracted from these images, including measures such as mean, variance, skewness, and kurtosis.as shown 

in Table 3. 

Table 3. Gabor features 

GABOR FEATURES NORMAL ABNORMAL 

Mean 117.25±70.219 91.779±54.955 

Variance 10346.37±12258.52 6135.399±7268.255 

Skewness -0.0869±0.0098 -0.03172±0.0152 

Kurtosis -1.5033±0.0362 -1.2877±0.066 

 

These four features are fed into SVM with four kernel functions and the performance of each classifier has been 

assessed in terms of accuracy, sensitivity and specificity as shown in Table 4. The linear kernel is particularly beneficial 

when dealing with vectors that can be linearly mapped to a high-dimensional feature space and the kernel increases overall 

accuracy of 96%, sensitivity of 98% and specificity of 93%. Figure 12 shows the ROC curve for all the four classifiers.  

Table 4. Classification accuracy for Gabor texture features 

SVM Kernel Accuracy Sensitivity Specificity 

Linear 95.7% 98% 93% 

Polynomial 71% 68% 70% 

Radial Basis Function 77% 55% 1.0% 

Sigmoid 60% 55% 67% 

 

 

The performance analysis of each feature extraction technique is represented in Table 5. In summary, 

investigation demonstrates that the synergy between GABOR feature extraction and SVM classification yields promising 

results for the detection of diabetic retinopathy in retinal images. The achieved precision, recall, and overall accuracy rates 

substantiate the effectiveness of this approach, paving the way for potential advancements in the realm of medical image 

analysis and automated disease diagnosis. This study underscores the potential of Gabor in conjunction with SVM as a 

formidable tool in the domain of medical image analysis, offering significant contributions towards enhancing diagnostic 

accuracy and efficiency. 
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Fig. 12. ROC analysis of GABOR - SVM kernels 

Table 5. Performance analysis of the feature extraction technique 

Feature 

Extraction 

technique 

Actual Class Precision Recall F1-Score Support 

GLCM Normal 76% 71% 73% 180 

Abnormal 67% 73% 70% 150 

SIFT Normal 

 
96% 

 
91% 

 
93% 

 
179 

Abnormal 

 
90% 

 
95% 

 
92% 

 
155 

Gabor Normal 99% 93% 96% 180 

Abnormal 92% 99% 96% 150 



4. Conclusion 

In the proposed work, a non-intrusive procedure has been presented to assess the presence of diabetic 

retinopathy by analysing real time acquired thermal eye images obtained from 40 DR and 32 control participants. 

Subsequently, the images undergo pre-processing. Three types of texture features are extracted for this study, specifically 

GLCM, Gabor features and SIFT features. The classification of diseased and normal eye IR images is done through Support 

Vector Machine classifier utilizing various kernels with the feature set as input. The simulation results demonstrate that the 

algorithm is highly efficient in terms of achieving a very high classification accuracy rate for distinguishing diabetic 

retinopathy from normal eyes. The study compared the classification accuracy of the three types of texture-based features, 

with the Gabor feature-based classification outperforming the others, achieving an accuracy rate of approximately 95.7%. 

The results obtained were compared with the other research papers and presented in Table 6. 

Table 6. Comparison of results with literature 

Related reference Number of class Accuracy (%) 

A.A. Khan et al., (2018) 2 84.5% 

Acharya UH et al., (2015) 2 93.10% 

Proposed Model 2 95.7% 

The demonstrated effectiveness of the proposed techniques holds the potential to significantly assist 

ophthalmologists in more accurate retinal image analysis. This, in turn, could lead to improved early-stage treatment, 

ultimately contributing to the prevention of blindness. This approach can be further extended to assess different levels of 

Diabetic Retinopathy. Such a system can be useful in automated large-scale screening.  
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