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ABSTRACT: 
  

Diabetes mellitus is one of the most commonly diagnosed disorders around the globe. Around 400 million people globally 
are affected with this disorder with around 1.2 million deaths. Some complications include diabetic retinopathy, foot ulcers, 
and renal failure. The use of thermal imaging makes the diagnostic process non-invasive, reducing discomfort and the risk 
of infection associated with traditional methods. Early detection of diabetic foot ulcers is crucial for timely intervention and 
prevention of severe complications, such as infections and amputations. Deep learning models have the potential to provide 
accurate diagnoses by analyzing thermal patterns that may not be easily discernible by the human eye and could potentially 
track the progression and severity of the disease over time. A total of 996 images with 264 healthy images and 732 unhealthy 
RGB images were used in this work. The total dataset was split into training, testing, and validation groups in the ratio 6:2:2. 
The left and right foot images were equally randomized in the respective models while training. ResNet50 is used with a 
learning rate of  0.01 having 20 epoch gives the highest accuracy of 98% and a minimum loss of 1% further, the work can be 
enhanced with a real-time database. 
 
1. Introduction 
  

          Diabetes mellitus or Diabetes is caused by the irregular secretion of insulin in the body that alters the levels of glucose 
present in the blood.  The alteration in the level of glucose caused by the variation of insulin is known to have detrimental 
effects on the heart, blood vessels, nerves, eyes, and kidneys leading to lifelong issues such as cardiovascular diseases, 
peripheral nerve damage, renal failure, diabetic retinopathy, and diabetic foot ulcers. Diabetic Foot Ulcer (DFU) is a type of 
skin ulcer that occurs as the diabetes progresses. The skin ulceration covers the lower limb of the patient.  Complications of 
diabetic foot ulcers lead to osteomyelitis and gangrene [1]. In extreme cases of DFU, a patient’s leg is amputated to prevent 
further complications. Factors that contribute to DFU include Diabetic Neuropathy and Peripheral Artery Disease [2]. In 
Neuropathy, Hyperglycemia induces oxidative stress on the nerve cells which triggers neuropathy. Further glycosylation leads 
to ischemia. Neuropathy occurs at the sensory, motor, and autonomic levels [2].  Damage to the motor neuron causes 
muscular neuropathy resulting in the paralysis of flexor extensor muscles such as the Extensor Digitorum Brevis. This 
muscular immobilization often results in anatomical changes in the foot arch and the metatarsophalangeal joints [3] leading 
to deformities of the foot such as Plantar Aponeurosis, Claw Toe, and Horseshoe foot [4]. Sensory neuropathy is 
accompanied by muscular neuropathy causing pain insensitivity, the patient loses their ability to perceive pain increasing the 
susceptibility to injuries without consciousness, Sensory neuropathy also results in unequal foot load and an imbalance in 
the patient’s gait. At the autonomic level, reduction in sweat secretion and overheating of the skin occurs due to increased 
perfusion leading to skin breakdown. With increased friction and skin abrasion, pressure ulcers are aggravated and there is 
a compromise in the body’s natural immune response to foreign bodies [5][1]. 

 
According to Xuan Wang et al [3], 78% of all patients diagnosed with DFU already have Peripheral Arterial Disease. 

At the cellular level, excessive blood sugar levels cause the dysfunction of endothelial cells which reduces the levels of 
vasodilators in the blood. With time, reduced vasodilation levels contribute to vasoconstriction and hypercoagulation which 
results in ischemia and skin ulceration. Because of the endothelial dysfunction, re-vascularization ability becomes limited and 
the wound healing process is slow. DFUs are classified based on the wound progression depending on the site, size of the 
ulceration, and depth of the wound [5]. This deterioration increases the mortality rate significantly and therefore requires 
amputation. According to et al, amputation due to DFU happens every 30 seconds in the world as an intervention to prevent 
gangrene from taking over the patient’s lower limb entirely. 

 
DFU has been shown to negatively impact the health-related quality of life in patients suffering from diabetes-related 

complications. In a variety of studies conducted to understand the patient-reported outcomes associated with diabetes, 
reduced mobility and the resulting loss of independence [6] in carrying out day-to-day life activities were identified as 
contributing factors for a lower quality of life. Additionally, the worries associated with infection and wounds and the fear of 
amputation [7] increased anxiety and depression among the patients. These psychosocial determinants showed a high 
correlation with a reduced health-related quality of life [8] and were shown to severely impact the mood and overall living in 
patients apart from the physical injury itself. With the aim of wound healing and preventing further deterioration of the ulcers 
leading to amputation there are several multidisciplinary control measures in the form of diagnosis and treatment that are in 
practice clinically. Tools for diagnosis are foot examinations, patient history evaluations, and physical examinations [9]. 
Certain biomarkers with an indication for inflammation such as the Tumor Necrosis Factor - ∝, Procalcitonin, and Interleukins 
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[10] are also currently in use. The treatment option for DFUs is removal of debridement, in more severe cases surgical 
debridement is preferred. Other treatment interventions include wound dressings; antibiotics are also administered based on 
the type of infection and type of pathogen present [9]. 

 
Over half of the world’s population is diagnosed with diabetes. In 2021 alone, 536 Million people suffered from 

diabetes, and the prevalence is set to grow by 12.2 % and is expected to affect 783.2 Million people by the year 2045 [11]. 
10 to 15 % of the population suffering from Diabetes are susceptible to developing a DFU [4], the chances of which are 25 
% during a diabetic patient’s lifetime [1] with an incidence rate of 2 % annually [12]. Routine screening of the patient’s foot is 
necessary for proper management of the ulcer deterioration and monitoring of the wound healing process. The patient has 
to make visits to their practitioner every 1 year or 3 to 6 months depending on their risk category [12]. This means that a 
heavy economic burden is placed on the patient as well as the hospital. With the risk of reinfection and amputation, an 
average 5-year mortality rate for a patient suffering from DFU stands as high as 40% [13] making it one of the most common 
causes of death globally. Hence, early diagnosis of DFUs is important in order to improve the quality of life of patients and 
prevent death and more tools have to be innovated for timely identification and intervention [14]. 

  

Currently the DFU are diagnosed by inspecting the toes, toenails and foot for any potential ulcer-causing injuries.  Blood 
flow rates in the foot are evaluated by feeling the pulse and the sensitivity of the foot is also diagnosed. Ultrasound Doppler 
test is performed to analyze the blood vessel and the blood flow [15]. All the state of art methods involve certain procedures 
and are not suitable for early diagnosis. To overcome the limitations of these methods a non-invasive approach of screening 
is suggested using thermal imaging [16]. Detection of diabetic foot ulcers using thermal imaging helps to reduce the 
progression of the disease at the early stage thereby avoiding the foot complications that may lead to severe ulceration and 
amputation of fingers and toes [17]. The scope of this work is to provide a dedicated non-invasive testing tool for the diagnosis 
of Diabetic foot ulcer. While using non-invasive techniques such as thermal imaging reduces the discomfort caused to the 
patient and improves the early diagnosis rate significantly. This thermal imaging diagnostic tool will be an effective tool during 
mass screening. The accuracy associated with such techniques in its ability to distinguish Diabetic foot ulcers with other kinds 
of foot pressure sores is still a major challenge where current research works are focusing on [17]. 

 
Thermal cameras detect and capture various degrees of infrared light to determine temperature. Thermal imaging 

is a relatively safe way to make early decisions about a bosom disease that does not involve injecting any energy into the 
human body [17][18]. Thermographic cameras distinguish long-infrared radiation (approximately 9,000-14,000 nanometers 
or 9-14 m) producing thermograms, which are visual representation of this radiation [19].  It represents a visual depiction of 
temperatures in order to compare them.  Forward-looking infrared cameras, as well as other warm imaging cameras, use the 
location of infrared radiation, which is typically transmitted from an intensity source (thermal radiation), to create a picture for 
video yield. The two primary wavelengths of infrared light are long-wave and medium-wave infrared light. Long-wave infrared 
(LWIR) cameras, often known as "far-infrared" cameras, operate at a wavelength of 8 to 12 m and may detect heat sources 
as far as a few kilometers away, such as hot engine parts or human body heat. Objects in the 3-5m range are detected using 
medium-wave infrared (MWIR) cameras [19][20]. In this work, a method for an early and non-invasive way of detecting 
diabetic foot through the use of thermal imaging and deep learning techniques is presented.  Introduction and early research 
are discussed in section 1 followed by the methodology in section 2. The simulated results and performance analysis is 
addressed in section 3. 
 
2. METHODOLOGY: 
  

 The methodology to detect diabetic foot ulcers involves data acquisition using a FLIR camera [21] followed by 
preprocessing of the acquired images. The acquired images are augmented and rescaled then fed to the CNN model to 
classify the diabetic foot from the control group. The overall methodology is presented in Fig 1. 



 

Fig 1: Overall Methodology 

 
2.1 Dataset and Preprocessing 

 
The images are obtained from the Plantar thermogram database [22] with 122 diabetic subjects and 45 control 

subjects. The total dataset was split into training, testing, and validation groups in the ratio 6:2:2. The left and right foot images 
were equally randomized in the respective models while training.  Since the actual dataset contained segments of the foot 
(angiosomes) as well, segregation of the whole foot image from the angiosomes was done in order to maintain uniformity, 
and data augmentation was performed to increase the sample space after segregation. Fig 2. Shows a sample image of both 
healthy and unhealthy feet.  

 
        Fig. 2. Healthy (left) and Unhealthy (right) image sample  

In order to maintain the uniformity of the dataset and to match the size of the original sample space, resizing and 
data augmentation is performed on the dataset. The rotation range defines the angle at which the image is rotated along its 
vertical axis [18][21].  For the considered dataset, a value of 40 is set as the rotation range. The shear range is the amount 
of shear change given to a particular axis alone while the other axes remain intact. A minimal value of 0.2 as a shear range 
is used to prevent loss of information. The horizontal flip was set to 0.2. It is responsible for flipping the rows and columns in 
a horizontal orientation. Zooming and brightness ranges were set to 0.2 and (0.5, 1.5) respectively. After augmentation a 
total of 996 images with 264 healthy images and 732 unhealthy RGB images were used in this work. 
 



2.2 CNN-based Image Classification 

 
The pre-processed images are fed into multiple pre-trained models such as AlexNet, VGGNet, InceptionNet, 

MobileNet, and ResNet50. After multiple levels of training and validation, the performance metrics are compared against one 
another in order to determine the best model for the diagnosis of DFU.  
 

2.2.1 AlexNet: 

AlexNet is a renowned deep convolutional neural network architecture, Fig.3 comprising five convolutional layers 
and three fully linked layers. Within the convolutional layers, filters of different sizes are used to extract features from input 
images. Furthermore, max-pooling layers are used to reduce the feature maps' spatial dimensions, while the fully connected 
layers play a pivotal role in the ultimate classification process. AlexNet's success can be attributed to the adoption of 
convolutional neural networks with deep layers using ReLU activation functions, which facilitated the model to learn more 
sophisticated features than previous approaches [23]. 

 

Fig. 3. Architecture of AlexNet [Shafiq S, 2021] 
 

AlexNet was trained using stochastic gradient descent (SGD) with momentum, and weights were updated using 
back propagation. The model was developed using a specific classification task after being fine-tuned on a huge collection 
of images, such as Image Net. [23][24]. 
 

2.2.2 VGGNet: 

VGG16 is a convolutional neural network architecture, Fig.4, comprising 19 layers, including 16 layers of convolution 
and 3 layers that are fully connected, and is designed to learn high-level features from input images and classify them into 
various categories. VGG16 is a large network with approximately 138 million parameters. A pooling layer is added after a 
few convolutional layers which decreases the height and width. There are approximately 64 filters accessible, which are used 
to double to approximately 128 and finally to 256 filters. 512 filters are used in the final stages [24][25]. 

 

 

Fig. 4. Architecture of pre-trained VGG19 model [Mohammed Y, 2021] 
 

 
 



2.2.3 Inception Net: 
 

The network is built with around 22 layers, Fig 5. The use of average pooling before the classifier allows to easily 
adapt and fine-tune our networks for other label sets. Rectified linear activation is used in all convolutions, including those 
within the Inception modules. Deep depth and the ability to effectively propagate gradients back through all layers is complex 
in this network [23][26][27]. 

 

 
Fig. 5. A flowchart describing the architecture of Inception 

 2.2.4 Mobile Net: 

 
The MobileNet model, as shown in Fig. 6, is constructed based on a combination of depthwise separable 

convolutions and pointwise convolutions. Depthwise separable convolutions consist of two layers: depthwise convolutions, 

which used to apply a single filter to every incoming channels. After that, the pointwise convolution—a straightforward 1x1 

convolution—is used to linearly merge the output of the depthwise layer. MobileNets uses batch normalisation and ReLU 
nonlinearities for both layers. All layers are followed by batch normalisation and ReLU nonlinearity, with the exception of the 
last fully connected layer, which lacks nonlinearity and connects to a softmax layer for classification.It's worth noting that 
MobileNet comprises a total of 28 layers when counting depthwise and pointwise convolutions separately. 

  

 Fig. 6. A flowchart describing the architecture of MobileNet [Howard 2017] 

2.2.5 Resnet 50: 

ResNet50 is an architecture, Fig. 7, of a deep convolutional neural network that encompasses 50 layers. These 
layers include layers that are convoluted, max-pooling layers, and fully connected layers, where filters of various sizes are 
utilized to obtain essential information from the input data. The fully connected layers perform the final classification, and the 
max pooling layers assist in reducing the spatial dimension of the map's features. ResNet50 is typically trained using 



stochastic descent of gradients(SGD), and the weights are updated using backpropagation. Its innovation in the use of 
residual connections has enabled it to learn deeper representations of images and mitigate the vanishing gradient problem 
in very deep networks [23][24].  

 

Fig.7. ResNet Architecture [Rammah Yousef, 2022] 

 
 
 
3. RESULTS AND DISCUSSION 

  

The dataset considered for this work were preprocessed and fed to the different CNN architecture namely Alexnet, 
VGG net, mobilenet, Inception and Resent50 and the performance of each architecture are analyzed. The transfer learning 
is performed on the specified models for classification of DFU and healthy subjects. The hyper parameters of the pre-trained 
models are tuned manually for better classification thereby increasing the efficiency of the models. The learning rate and the 
epochs of the model are considered for tuning. The performance metrics for each model are presented in Table 1 and 2. 
 

Table 1. Training and validation accuracy for AlexNet and VGGnet 
 

Learning 
rate 

Epochs 

Alexnet VGG16 

Training 
Accuracy  

Validation 
Accuracy 

Training 
Accuracy  

Validation 
Accuracy 

0.001 35 0.6556 0.6915 0.85 0.84 

0.001 30 0.6530 0.6818 0.89 0.85 

0.001 25 0.6533 0.6766 0.81 0.91 

0.001 20 0.6523 0.6994 0.82 0.92 

0.01 20 0.6203 0.6988 0.86 0.79 

0.1 20 0.6199 0.6734 0.57 0.55 

 
 
 
 
 
 



Table 2.  Training and validation accuracy for MoblieNet, Inception and Resnet 50 
 

Learning 
rate 

Epoch 

Mobile net Inception Resnet 50 

Training 
Accuracy 

Validation 
accuracy 

Training 
Accuracy 

Validation 
accuracy 

Training 
Accuracy 

Validation 
accuracy 

0.01 5 0.760 0.965 0.78 0.90 0.734 0.9176 

0.01 10 0.780 0.94 0.76 0.87 0.71 0.9325 

0.01 30 0.960 0.859 0.8 0.89 0.92 0.8311 

0.01 20 0.992 0.938 0.86 0.95 0.99 0.9649 

0.1 20 0.965 0.947 0.75 0.82 0.9659 0.94 

0.001 20 0.939 0.965 0.88 0.82 0.9348 0.9750 

0.25 20 0.948 0.859 0.90 0.85 0.9572 0.8346 

 
From the table 1 and 2 it can be inferred that the different hyper parameters such as learning rates, epochs  

and optimizers are used in training the CNN models (AlexNet, VGGNet, InceptionNet, ResNet50 and MobileNet). From the 
analysis, it is understood that the ReseNet50 outperforms the other considered models. 
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Fig. 8. Performance analysis of considered CNN Models 

(First column: training and validation accuracy, Second column: training and validation loss, third column: ROC Curve) 
 

The performance analysis of the AlexNet, VGG net, Mobile Net, InceptionNet and ResNet 50 are presented in the 
figure 8. From the graphical representations it can be summarized that the pre-trained model Resent50 gives better 
classification accuracy compared to the other considered models. 
  

From the above analysis, Alex net with a learning rate of 0.001 having 20 epochs gives the highest accuracy of 
65% and a minimum loss of 1.1%. It has the lesser efficiency when compared to the other models. MobileNet with a learning 
rate of 0.01 having 20 epochs gives the highest accuracy of 99% and a minimum loss of 2%. Since the area under the curve 
is 0.98 and it predominantly lies in the top-left region of the plot and it is inferred that the Mobile Net Classifier has relatively 
better feature detection abilities compared to the other pre-trained models. VGG Net with a learning rate of 0.001 having 30 
epochs yields an accuracy of 85% and a minimum loss of 3%, since the area under the curve is 0.75 it can be inferred that the 
VGG Net Classifier has relatively lesser feature detection abilities compared to the other pre-trained models. Similarly, the 
Inception net with a learning rate of 0.01 having 20 epochs gives the highest accuracy of 86% and a minimum loss of 4.2%. 
It’s relatively less in accuracy when compared to MOBILE Net. The AUC is 0.99 which is steep and predominantly close to the 
top-left corner. However, the ResNet with a learning rate of 0.01 having 20 epochs gives the highest accuracy of 98% and a 
minimum loss of 1% The AUC is 0.95 that is steep and predominantly close to the top-left corner. Therefore, it is observed that 



the ResNet50 have better efficiency towards feature detection abilities with higher accuracy rates and remaining parameters 
compared to the other pre- trained models. 

 
Table 3. Performance comparison with other pre-trained models 

 

 

Class Labels 

N= 198  

 

Class Predicted by the CNN models. 

Alex net VGG Net Mobile Net Inception Net ResNet 50 

TP TN TP TN TP TN TP TN TP TN 

PP 112 21 134 4 132 7 139 4 142 3 

PN 34 39 12 48 6 45 7 49 4 49 

Sensitivity 0.7671 0.9178 0.9565 0.9521 0.9726 

Specificity 0.65 0.9231 0.8654 0.9423 0.9423 

Precision 0.8421 0.971 0.9496 0.9789 0.9793 

Accuracy 0.733 0.9192 0.9316 0.9495 0.9646 

F1 score 0.8029 0.9437 0.9531 0.9653 0.9759 

 
*PP- Predicted Positive, PN – Predicted Negative, TP- True Positive, TN – True Negative 

 
             From the above table, we can infer that ResNet50 has given us the highest accuracy, 96.4%, relative to the other 
models. We can also observe from the confusion matrices that ResNet50 has performed large values of true positive (142) 
and true negative (49). AlexNet has the least accuracy, 73.3%, and low values of true positives and true negatives.  
 
   
4. Conclusion 

 
In this work, the performances of various CNN models in the detection and diagnosis of DFU using thermal imaging 

modality is studied. The dataset, considered for this work includes images from the 44 control group and 122 diabetic group. 
The images from the dataset are preprocessed and augmented then fed to the pre trained CNN models. Performance and 
evaluation metrics were analyzed to determine the best model for DFU detection and diagnosis. Different hyperparameters 
such as learning rates, epochs and optimizers were used in training the CNN models (AlexNet, VGGNet, Inception Net, 
ResNet50 and MobileNet). From the analysis, it is inferred that the best model for the aforementioned purpose is ResNet50. 
Further, This research can also be expanded to track the disease's development using real-time data. 
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