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Abstract 

Dynamic thermography has firmly established itself as a diagnostic tool for breast cancer screening, often 
employed in conjunction with mammography and Clinical Breast Examination (CBE). Thermomics or temporal dynamic 
thermographic imaging biomarkers, have demonstrated their ability in the identification of vasodilation and angiogenesis 
within breast tissue, serving as biomarkers to highlight abnormalities and lesions. The development of new blood vessels 
or angiogenesis is also revealed with the aid of heterogeneous thermal patterns. This study focused on an overall look at 
the thermomics and they are for CBE-based breast cancer screening. We showed an application of dynamic thermal image 
embedding approaches and their help to find breast thermal heterogeneity with the optimal number of low-rank factorization 
methods. Using ideal biomarkers holds the potential of maintaining thermal heterogeneity, facilitating the early detection 
of breast cancer, and can function as a non-invasive aid for CBE. 

1. Introduction 
Thermal dynamics, specifically the temporal evolution of thermographic features, have emerged as a valuable 

tool in the early detection of breast cancer, a disease ranking as the second leading cause of mortality among women [1]. 
These thermal dynamics are proposed for deployment in clinical breast examination (CBE) and as a preliminary screening 
modality preceding mammography, furnishing critical insights into potential abnormalities in patients [2,3]. The fundamental 
principle underpinning thermographic imaging resides in the observed augmentation of vasodilation and angiogenesis, the 
formation of new blood vessels, in the breast region attributed to irregular lesions. These endocrine shifts, instigated by 
breast lesions, induce alterations in the thermal profile, indicative of heightened vascularization essential for supplying 
oxygen and nutrients to these lesions [3,4]. The utilization of an infrared camera facilitates the capture of these alterations, 
ultimately leading to the identification of abnormalities. Several studies have substantiated the pivotal role of thermography 
in discerning hypervascularity in non-palpable breast cancer cases [4]. This phenomenon holds the potential to serve as a 
biomarker for the early detection of breast cancer during CBE and before conventional mammography. 

Nonetheless, the primary challenge in the utilization of infrared technology for breast cancer detection centers 
around the intricate task of capturing irregularities and translating raw infrared sequences into coherent thermal patterns. 
To surmount this challenge, there has been widespread adoption of low-rank matrix approximation methods, wherein the 
essential basis of the decomposed eigenvector matrix is carefully chosen to extract the dominant images that faithfully 
represent the entire thermal data stream. A diverse array of techniques, including principal component analysis (PCA or 
PCT) [5,6], non-negative matrix factorization (NMF) [7], fixed eigenvector analysis [8], incremental PCA [9], sparse 
factorization [10], t-distributed stochastic neighbour embedding (t-SNE) [11], candid covariance-free incremental principal 
component thermography (CCIPCT) [12], sparse PCA [13,14], semi-NMF [15-17], sparse NMF [18], convex NMF [19], 
deep NMF [20], and deep learning convex [21], have been harnessed in the domain of thermography to address these 
computational complexities. 

Efficiently extracting the low-rank matrix representation characterized by maximum thermal pattern variance 
hinges on the selection of the most appropriate basis, a task that introduces an additional layer of complexity. To tackle 
this challenge, embedding techniques have been integrated into the analysis of low-rank approximation for dynamic 
thermography, as demonstrated in this study. The research advocates for the utilization of the most dominant basis in 
conjunction with embedding to extract thermomic features and subsequently train a classifier tailored for the early diagnosis 
of breast abnormalities. Notably, the proposed embedding functions offer superior representations of the underlying normal 
distribution compared to the previously employed low rank matrix factorization techniques. This advancement holds the 
potential to yield more precise representations of thermal patterns and, consequently, a more effective thermal diagnostic 
biomarker. 

2. Method 
2.1. Low-Rank Matrix approximation 

Input data X is a stack of vectorized thermal images, a heat matrix. A low-rank representation model is shown as 
follows: 

X ≈ BA                                                                                                                         (1) 
where X ∈ ℝMN×τ , i.e., X = [𝐱𝟏 , 𝐱𝟐, … , 𝐱τ] and can be shown by a linear combination of 𝜏 bases, B =  {𝛃𝟏, 𝛃𝟐, … , 𝛃𝛕}, B ∈
ℝMN×τ and A, a coefficient matrix, A ∈ ℝ𝜏×𝜏, A =  {α1, α2, … , ατ}. 𝐱1 , 𝐱2, … , 𝐱τ are vectorized thermal images and correspond 

https://creativecommons.org/licenses/by-nd/4.0/deed.en
10.21611/qirt.2023.28




 

4th Asian Quantitative InfraRed Thermography Conference, October 30, 2023, Abu Dhabi, U.A.E . 
 

 

 2 
 

to 𝜏 frames. X is normalized stacked of many thermal tensors obtained from input thermal images. Bases and coefficients 
can be modified depending on which eigen decomposition or matrix factorization method is used. 

2.2. Sparse Low-Rank Matrix approximation 
Previous works have also shown different approaches to extracting thermomics. Sparse low-rank matrix 

approximation was previously used to extract them from different thermal images [18]. The factorization methods used 

were sparse PCT and semi-, convex- and sparse- NMF. PCT decomposes the input data X to U∑VT where U and ∑ 
represent eigenvector and eigenvalue matrices [18]. Sparse-PCT in contrast is defined as follows: 

   ∑ ||𝐱i − ABT||2 + λ||B||2Δ
i=1   S. T.    ATA = 1     (2) 

Where sparse-PCT optimizes the selection of bases with the addition of penalty terms in which increases the sparsity of 

three NMF methods as NMF assumes matrices X, B, and A are non-negative (X = BA)[18]. Semi-NMF performs the matrix 
composition where A is still nonnegative, but B has no restriction represented by: 

    𝐱 = BAsemiNMF         S. T.         A ≤ 0, B ≥ 0       (3) 
Convex-NMF on the other hand imposes a constraint of the basis vectors lying within the column space of X. X in this case 
is defined as a linear combination of 𝜏 bases, B =  [𝛃1, 𝛃2, … , 𝛃τ], and the coefficient A [18] represented by: 

    B = XW                      S. T.       A ≥ 0, W ≥ 0      (4) 
Sparse-NMF was proposed as a more robust way of thermal pattern extraction as it has minimal collinearity among bases 
compared to the semi- and convex- approaches as well as minimizing noise in the measurement of low-rank approximation. 
Sparse-NMF can be classified by the equation: 

 𝑐𝑠𝑝𝑎𝑟𝑠𝑒−𝑁𝑀𝐹 = 1/2||X − AB||F
2 + λ||B||1      (5) 

Let ‖B‖𝑝 is the ℓ𝑝-norm of B given by ℓ𝑝 =  ∑ ‖Bd,m‖
p

1/p
d,m  similar to usual ℓ1 penalty term to imitate the ℓ0 behavior for 

calculating B for convex A [18,22]. The solution for all 𝜆 values is achieved through the Least Angle regression and selection 
algorithm. Results in the preservation of thermal heterogeneity using the NMF approaches provided accuracies of 74.1%, 
75.9%, and 77.8%.  

2.3. Embedding Thermography  
The use of bases embedding has been proposed in previous studies [19,20,24], which involves combining multiple 

decomposed bases to reduce the dimensionality of thermal images. We previously applied low-rank representation 
methods to transform higher temporal dimensionality into lower temporal representations, which can be considered as 
bases computed using matrix factorization approaches [19]. We generate a set of low temporal dimensional represented 
bases (B =  {𝛃𝟏, 𝛃𝟐, … , 𝛃𝛕},  where B ∈ ℝs×τ, 𝑠 =  𝑀𝑁)) and integrate their overall representation using two embedding 
membership functions [19,20,24]. This approach allows us to effectively reduce the dimensionality of presenting thermal 
images while preserving important information. 

 

Definition 1. (From [19,20]) The embedded low-dimensional representation, 𝚽, defines by aggregating membership 
calculated for p bases of X, 𝜇𝑝, elementwise multiply by the basis itself, 𝛃𝑖, and defined as: 

𝚽 = ∑ 𝛃i⨀ 𝛈𝐢 

𝑝

𝑖=1

                                                                                                  (6) 

where 𝛈𝐢 is a membership on basis 𝛃i and defines by: 

𝛈𝐢 = e
𝛃i−μ

σ . 
Let μ, σ mean (average) of a thermal image in the ROI basis and standard deviation of 𝑖𝑡ℎ −basis in the calculation. Letting 

µ,𝜎 be the mean and standard deviation of the 𝑖𝑡ℎ thermal basis. We can also define Bell embedding as: 

 

Definition 2. (From [24]) The embedded low-rank matrix approximation, �̇�, defines by aggregating membership calculated 
for p bases of X, 𝜇𝑝, elementwise multiply by the basis itself, 𝛃𝑖, and defined as: 

�̇� = ∑ 𝛃i⨀ 𝜻𝒊 

𝒑

𝒊=𝟏

                                                                                                (7) 

where 𝛇𝐢 is a membership on basis 𝛃i and defines by: 

𝛇𝐢 =
1

1 + |
𝛃i − μ

σ
|

2b
. 

 
With the variable b being an arbitrary coefficient in this case. 𝛇𝑖 is a generalized curve (Bell-shaped function) and a 
direct generalization of the Cauchy distribution. Thermomics extracted from the embedded bases subsequently lead 
to the automatic detection of breast cancerous leading abnormalities (CLA) which can be used for CBE and screening. 
The findings of this study validate the reliability of thermomics in the early detection of breast cancer and effectively 

highlight CLA in patients. 
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2.4. Deep-Learning Driven Thermomics 
2.4.1. Hilbert Embedded Deep Low-Rank Matrix Factorization  
As an improvement to the dimensionality reduction in the extraction of thermomics [20] using the deep low-rank 

NMF. We approach the overall decomposition process by sequentially decomposing the matrix X ≈ B1A1, and then further 

deconstructing B1 in a recursive manner until all layers are fully decomposed. The utilization of Deep-SemiNMF results in 

the generation of a set of matrices B1, B2, B3, … , Bm, where each Bi (for 𝑖 = {1, … , 𝑚}) corresponds to a distinct basis that 
captures specific patterns of heterogeneity within thermal images. In contrast, the application of SemiNMF in a shallow 
context yields a combined set of bases within a single matrix. Within the Deep-SemiNMF framework, we have the capacity 
to derive new features denoted as A∗ by assuming that the weighted matrices (multi-layer bases) Bi remain fixed, and for 
all layers indexed by l, we have: 

X ≈ B1A1 ≈ B1B2A2 ≈ B1B2 B3 … BmA∗  
This dynamic formulation allows us to uncover and leverage intricate features across multiple layers to enhance 

the representational power of the model. We can learn new features A∗, by assuming that weighted matrices (multi-layer 

bases) ∀𝑖, B𝑖 are remain fixed and ∀𝑙, A𝑙
∗ we have: 

      𝑎𝑟𝑔𝑚𝑖𝑛
A

‖𝐱∗ − ∏ B𝑖A𝑙
𝑙
𝑖=1 ‖           s.t. A𝑙 ≥ 0.                         (8) 

where A𝑙, links to the 𝑙𝑡ℎ feature layer for the out-of-sample data point 𝐱∗. Then the low-rank approximation was modified 
via the implementation of the Hilbert embedding method. This embedding method divided the thermomics set into several 
partitions. The Kernel value was then measured in each partition and the V-statistics are calculated among the features 
[20]. The dependency of the spanned thermomics’ distribution was estimated using least absolute shrinkage and selection 

operator (lasso). The method for this is called HSIC Lasso, where HSIC defines as a given kernel matrix  𝑲𝒒 ∈ ℝ𝜹𝑿𝜹 and 

offered an output criterion ℂ ∈ ℝ𝜹𝑿𝜹[20]. With the use of the radial based function (RBF) Gaussian kernel, this method 
offered a scoring value to remove any redundancies in the thermomics and select three high-scoring features. The selected 
features were then added as a multivariate to train a random forest classifier with 100 trees and a maximum depth of two 
to classify patients into asymptomatic or symptomatic categories [20].  

 
 

2.4.2. Pretrained CNN 
Deep Neural Networks have also found application in conjunction with low-rank matrix approximation, a 

methodology known as Deep Thermomics [2,19,20,22,23]. In this approach, a pre-trained deep convolutional network, 
primarily designed for large-scale image recognition, is employed, with ResNet-50 being a notable example [2]. Deep 
Thermomics relies on low-rank matrix approximation applied to thermal sequences to uncover deep-thermomic features. 
As ResNet-50 necessitates input in the form of an RGB squared image, this characteristic is ingeniously leveraged to 

incorporate the initial three bases acquired through sparse-PCT as three input image channels, symbolized as ψ, where 

ψRGB 
 

→ ψβ1 β2 β3. The utilization of feed-forward convolution in neural network architectures emulates the operation of 

multiple internal functions within the model, thus enhancing the extraction of intricate features, as: 

ℱ(ψ) = ℱ𝐿(… ℱ2(ℱ1(ψ; {W1}); {W2}) … ; {WL}).                   ℱ: ℝ224×224×3         (9) 
 
The residual mapping, ℱ𝑖, signifies the learning objective within the model, while Wi represents the respective weights 
assigned to each layer, resulting in the extraction of a total of 2048 features using the pre-trained model [2]. Subsequently, 
the model underwent an adaptation phase wherein it was transformed into an autoencoder. This adaptation aimed to 
condense the dimensionality of the initial 2048 features down to a more compact representation consisting of just 16 
features. The dimensionality reduction process was executed through the integration of several dense layers of varying 
sizes situated within the latent space. Notably, this encompassed eight dense layers, with four located in each of the 
encoder and decoder segments [2]. The network's training regimen involved the utilization of a batch size of 128, spanning 

a total of 3000 iterations and implementing the Adam optimization algorithm to fine-tune the model. Letting 𝐱 ∈ ℝ𝐹 where 
F is 2048, to the latent space h =  𝑓𝑒(𝐱) = 𝑎𝑒(W𝐱 + be) being the hidden representation of the input vector [2]. The main 

objective for an autoencoder in this case was to minimize {Wi, bei} [2] in which it captures the predominant patterns in the 

data and provides a representation of data that is noise invariant which is extremely important when dealing with how 
sensitive infrared is to noise.  

 
To enhance the classification of thermal images, a combination of genetic algorithms and convolutional neural 

networks, including ResNet-50 and DenseNet-201, was employed in the analysis of images sourced from the DMR-IR 
public database [23]. The dataset comprised images derived from two distinct imaging protocols: static and dynamic. 
Specifically, this study focused on static images obtained from 176 healthy patients and 39 patients with identified illnesses. 
In total, 376 images were employed, encompassing 38 patients from each class. Regions of interest (ROIs) were 
meticulously chosen within breast areas potentially harboring tumors. The images were subsequently subjected to a 

normalization process utilizing the formula 255 ∗
(Pij−L)

H−L
, where Pij denoted the pixel value at position (𝑖, 𝑗) in the image, H 

represented the highest pixel value to be normalized, and L signified the lowest value within the dataset [23]. These 
manually selected regions of interest were further processed, including resizing and the substitution of each pixel's value 
with a pseudo-color to align with the requirements of convolutional neural networks (CNNs). To facilitate image 
classification, the CNNs were systematically configured using optimization techniques, with a genetic algorithm being 
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employed to determine the optimal parameters, encompassing the architecture of the fully connected layers and an optimal 
learning rate [23]. 
 

2.4.3. Sparse Deep-Convolutional Autoencoder Model (SPAER) 
To enhance the utilization of the previously mentioned pre-trained models, a novel approach was introduced, 

referred to as the Sparse Autoencoder (SPAER), aimed at facilitating low-rank approximation of thermal sequences to 
extract thermomic features for breast cancer diagnosis [22]. The architecture of this proposed autoencoder encompasses 
both encoding and decoding pathways. These pathways are designed to compress the input data into a lower-dimensional 
representation and subsequently expand this compressed data to reconstruct the input image with the objective of 
achieving the closest possible match between the output and the original input [22]. Subsequently, this approach quantifies 
the loss function and measures the distance between the initial input and the reconstructed output. To optimize the model 
parameters, a stochastic gradient descent algorithm is applied, ensuring an iterative refinement of the model to achieve 
the desired output fidelity. The input with the spatial dimension of 512 × 512 × 3, to the latent space dimension of 𝛈, 𝛈 =
𝐹𝑒(𝐱) = 𝑎𝑒(W𝐱 + 𝐛e) is the compressed representation of the input image, 𝑎𝑒 is the encoder activation, W and be are the 

weight and encoder bias matrices, respectively. y =  G𝑑(𝛈) = 𝑎d(WT𝛈) expand the latent features back to the original input 

spatial dimensions. 𝐲 is the equivalent of 𝐱 and 𝑎𝑑 is the decoder’s activation. A deep autoencoder composed of a multilayer 

model with several activations 𝑎(.)𝑖
, biases 𝐛(.)𝑖

, and weights Wi matrices with the goal to minimize {W𝑖 , 𝐛𝑒𝑖
} [22]: 

𝒥AE =  𝔼𝐱 [ℓ (𝐱, Gdi
(Fei

(𝐱)))]                                                                                             (10) 

 

3. Overview of Models’ Accuracies and Discussion 

This paper reports an overview of computational thermography using thermomics investigation into the capability 
of detecting vasodilatation via the identification of heterogeneous thermal patterns, which conducted utilizing datasets 
obtained from thermal breast cancer screening [26]. Subsequently, the outcomes derived from low-rank approximation via 
various methodologies developed in this field were juxtaposed against the results obtained through other cutting-edge 
thermal low-rank matrix approximation algorithms. In addition to these comparisons, a comprehensive assessment of 
embedding techniques was undertaken across all employed methods. This evaluation served as a crucial step in evaluating 
the effectiveness of embedding methods as well, which shedding light on the nuances of these diverse approaches.  

Hilbert embedded deep low-rank NMF resulted in a cross-validated accuracy of 71.36% (69.42%–73.3%) [19,20], 
where CCIPCT, PCT, NMF, Sparse PCT, Sparse NMF showed an accuracy range between (62.6%-67.5%) without 
embedding and improved for (64.6%-72.3%) for a sub-cohort of DMR. This is due to the aggravation of basis through 
Gaussian embedding. Bell Embedding improved these results by integrating more thermal images up to 77.9%. Bell 
embedding increases the focus on the heterogeneous thermal patterns in the infrared image. Figure 1 shows the different 
methods on healthy and cancer cases.  

Pretrained CNN model resulted an accuracy, reported by a random forest classifier, 78.16% (73.3-81.07%) 
between normal and abnormal subjects, which is very close to embedding low-rank methods without going through training 
of CNN process [24]. These results reported to be challenged using fine-tuning CNN models with an F1-score of 0.92 
(DenseNet-201) given to the whole image and 0.90 (ResNet-50) for the breast ROIs [23], while the dataset was divided 

 

 
Figure 1.  Two examples of healthy and cancer cases for different computational thermography methods.  
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(70%-15%-15%) into training, validation, and testing respectively, which highlights the strength of dense CNN. 
Unfortunately, thermomics in such models due to the end-to-end mechanism is not directly extracted. 
SPAER model paired with NMF resulted in accuracies of 78.2% (74.3–82.5%) [22]. These results suggested high 
performance in SPAER for the preservation of thermal heterogeneity. The model extracts low-dimensional latent space 
thermomics that can be used for training and testing a model. 
 

4. Conclusion 

This study provided an insightful overview of a significant breakthrough in the field of computational thermography, known 
as thermomics. Thermomics is a methodology geared towards quantifying thermal heterogeneities within dynamic 
thermography, employing diverse techniques such as low-rank matrix approximation, embedding, and the extraction of 
features through deep neural networks. The findings of this study comprehensively summarized the application of 
thermomics within the context of breast cancer screening during the clinical breast examination (CBE) stage. This 
application underscored the potential for detecting cancer-leading abnormalities (CLAs) that may ultimately progress to 
breast cancer, demonstrating the practical implications and diagnostic significance of thermomics in this domain. 
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