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Abstract

This paper presents a novel deep learning method, called DC-Fire, for recognizing wildland fires using aerial infrared
images. Experimental results show that DC-Fire achieved a high performance with an accuracy of 100% and an F1-score
of 100% using a large dataset and data augmentation techniques, better than classical machine learning and baseline CNN
methods. In addition, DC-Fire demonstrated its potential in detecting smoke and flames, surpassing challenges including small
areas of fire/smoke, background complexity, and the variability of forest fires in terms of size, shape, and intensity.

1. Introduction

Wildland fires cause damage and impact numerous aspects of human life and the environment, including economic
losses, air pollution, ecological imbalances, and human safety. For example, in 2023, more than 2000 fires affected 5,291,261
hectares in Canada, causing the evacuation of tens of thousands of people [1]. In addition, firefighting costs in Canada over the
past decade ranged between $800 million and $1.5 billion per year [2]. Researchers are therefore developing and implementing
early fire detection and recognition systems to improve early detection of wildfires and to reduce their impact [3, 4, 5, 6, 7].

Recently, IR (infrared) sensors were adopted to accurately recognize wildfires and identify their affected areas, thanks
to their ability in detecting the heat patterns emitted by fires, even when smoke and/or flames are not visible. Numerous
wildland fire systems were developed to prevent the damage caused by wildfires, by using RGB and IR sensors, as well as
by applying deep learning (DL) techniques to identify wildfire areas [8, 9, 10]. Among them, Huang et al. [11] presented a
Wavelet-ResNet50 method to improve fire detection performance and reduce false alarms. First, the 2D Haar transform was
employed to extract spectral characteristics from RGB images. Then, ResNet50 [12] was adopted to identify and recognize
fires. Using fire and fire-like images, test results showed that Wavelet-ResNet50 achieved a high F1-score of 94%, better than
the state-of-the-art methods. Reis and Turk [13] employed deep learning models, including Inception v3 [14], DenseNet-121
[15], ResNet-50 v2 [16], VGG-19 [17], and NASNetMobile [18] in classifying wildfire using aerial RGB images. The pretrained
DenseNet-121 with ImageNet dataset performed well, with an accuracy of 99.32%, compared to other DL models. Ghali et
al. [19] also proposed a DL method, which combines the EfficientNet [20] and DenseNet methods to classify forest fires on
RGB aerial images. The proposed method obtained an F1-score of 84.77%, outperforming the baseline methods. Bahhar et
al. [21] developed DL method, namely MobileNetV2 Baseline, to recognize wildfires using aerial RGB images. MobileNetV2
Baseline is a modified MobileNet v2 method [22], by adding a pooling layer, a dropout layer, and a classification layer. Using
FLAME dataset as aerial data, MobileNetV2 Baseline reached a great performance with an accuracy of 99.3%. In [23], a
simple CNN (Convolutional Neural Network), namely IRCNN, which comprises nine convolutional layers, was used to extract
features from IR images. Then, an SVM (Support Vector Machine) was adopted as a classifier to detect flames. Testing
results showed that the hybrid model achieved a high precision of 98.82%. In [24], five deep CNNs (LeNet5 [25], MobileNet
v2, Xception [26], ResNet-18, and VGG-16) and logistic regression method as a classical machine learning method were
studied in recognizing wildfires from aerial IR images. Using a large dataset FLAME2, VGG-16 achieved the best F1-score of
97.35%. Deng et al. [27] developed a two-layer concatenated CNN model to identify the fire zones and the type of burning
substances using infrared images. They used two simple CNNs, namely front-end CNN and Back-end CNN. The front-end
CNN was employed to eliminate the background information and improve the detection performance. The back-end CNN
extracts the fire characteristics then generates optimal detection results. Experimental results showed a superior performance
with a detection rate of 95.3% compared to AlexNet and VGG-16 [27]. Xavier et al. [28] also studied seven deep CNNs such
as MobileNet v2, ShuffleNet v2, GoogeLeNet, and VGG-16 in detecting early fires using IR images. Test results showed that
ShuffleNet v2 achieved the best validation performance, with an accuracy of 87.8% in comparison with the other models.

DL methods performed well in detecting wildland fires. However, few DL models were developed to recognize wildfires
using aerial infrared remote sensing data and to address challenges such as background complexity, and the variability of fires
in terms of intensity, size, and shape. For such, in this work, we present a novel ensemble learning method, DC-Fire, to identify
and recognize wildfires on aerial infrared images. DC-Fire combines DenseNet-201 [15] and EfficienNet-B5 [20] methods to
extract smoke/fire features in the IR spectrum.

Two main contributions were introduced in this work:
• A novel ensemble learning method, called DC-Fire, was presented for classifying forest fires on infrared aerial images,

thus improving the performance of DL-based wildfire recognition methods.
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• DC-Fire showed a strong ability in recognizing wildland fire areas as regions with high temperatures and smoke areas as
zones with distinct thermal properties, and in dealing with challenges, including background complexity, the detection
of small fire/smoke areas, and the variability of fires regarding their size, intensity, and shape.

The rest of the paper is organized as follows: Section 2 introduces the proposed DC-Fire method and the dataset
used for training and testing. In section 3, the experimental results were discussed. Section 4 summarizes the paper.

2. Materials and Methods

In this section, we first introduce our proposed ensemble learning method, DC-Fire, for forest fire recognition. Then,
we present the IR aerial dataset used to train and test DC-Fire.

2.1 Proposed Method

To detect and recognize wildland smoke and fires, we proposed a new deep learning method, namely DC-Fire,
which combines the DenseNet-201 [15] and EfficientNet-B5 [20] models, as shown in Figure 1. First, data augmentation
techniques such as rotation, zoom, shift, and shear were used to diversify the training data. Next, the infrared input data
and generated data were fed simultaneously into the DenseNet-201 and EfficientNet-B5 models to extract rich and relevant
features, including important patterns and characteristics related to smoke and fire. After concatenating the two feature maps
generated by DenseNet-201 and EfficientNet-B5, an average pooling was applied to reduce the spatial dimensions of this
concatenated feature map. Then, a Gaussian dropout with a rate of 0.3 was applied as a regularization method to improve
DC-Fire generalization by adding noise to the input infrared images, as well as to prevent overfitting. Finally, a sigmoid function
generated a probability value between 0 and 1, indicating the presence of forest fires and smoke in the input images.

Fig. 1. The proposed architecture of DC-Fire

2.2 Dataset

In order to train and evaluate the proposed method, DC-Fire, we used the public dataset FLAME2 [24], collected
by DJI Mavic 2 Enterprise Advanced drone in a forest in northern Arizona. Infrared images captured with an uncooled VOx
(vanadium oxide) microbolometer sensor, which collects a 640 x 512 pixel array and characterizes temperature from -40 ℃
to 550 ℃ and from -40 ℃ to 150 ℃ for low-gain and high-gain image capture, respectively. FLAME2 consists of 53,451
aerial infrared (wavelength range of 8 to 14 µm) images with a resolution of 254 x 254 pixels, including 14,317 fire/no-smoke
images, 25,434 fire/smoke images, and 13,700 no-fire/no-smoke images. Figure 2 depicts FLAME2 dataset examples, including
fire/smoke images and no-fire/no-smoke images.

3. Results and Discussion

We developed DC-Fire using TensorFlow on a machine with Intel(R) Xeon(R) CPU (E5-2620 v4), 64 GB of RAM,
and an NVIDIA Geforce RTX 2080Ti GPU. We also split the training data into three sets to train and test our proposed model
DC-Fire, as shown in Table 1: training (34,208 images), validation (8552 images), and test (10,961 images).

A learning rate of 0.001, a batch size of 8, and 150 epochs were used during the training process. Moreover, we
utilized the categorical cross-entropy loss function (see equation (1)) :

Cross− entropy = −
A∑

c=1

za log (p) (1)
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Fig. 2. FLAME2 dataset example. (Top): Fire images; (Bottom): no-Fire images.

Table 1. Dataset subsets.

Data Fire Images No-Fire Images Total Images
Training set 25,440 8768 34,208
Validation set 6360 2192 8552
Testing set 7951 2740 10,691

where A is the number of classes (in our case, two classes), z is the binary indicator, and p is the predicted probability.
As shown in Table 2, testing results showed that our proposed method, DC-Fire, achieved excellent performance with

an accuracy of 100% and an F1-score of 100%, thanks to the rich and diverse feature maps extracted by the DenseNet-201
and EfficientNet-B5 models. These models select a wide range of characteristics at varying scales, thus enabling DC-Fire to
correctly identify and classify forest fire/smoke patterns in aerial infrared images. Based on the F1-score, DC-Fire outperformed
the existing DL methods, Xception, LeNet5, ResNet-18, VGG-16, and MobileNet v2 by 13.19%, 7.70%, 3.46%, 2.65%, and
2.49%, respectively, as well as the traditional machine learning method, logistic regression, by 7.39%. It demonstrated its
potential in recognizing forest fire/smoke and overcoming challenges, including the detection of small wildland fire areas,
background complexity, and varying wildfire intensity (wildfire surfaces with flame lengths ranging from 0.25 to 10 meters).

Figure 3 predicts the confusion matrix of DC-Fire using testing data. We can see that the true positive rate, showing
correctly predicted Fire images, and the false positive rate, representing incorrectly predicted Fire images, are equal to 7951
and 0, respectively. Furthermore, the true negative rate, determining correctly predicted no-Fire images, is 2740, and there are
no false negative images (representing incorrectly predicted no-Fire images). This demonstrates the strong ability of DC-Fire
in distinguishing between fire/smoke and background, and in performing well in recognizing smoke/fire on IR aerial images.

Table 2. Comparative analysis of DC-Fire.

Models F1-score (%) Accuracy(%)
Logistic regression [24] 92.61 92.43
LeNet5 [24] 92.30 92.15
Xception [24] 86.81 85.79
VGG-16 [24] 97.35 97.29
MobileNet v2 [24] 97.51 97.38
ResNet-18 [24] 96.54 96.29
DC-Fire 100.00 100.00
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Fig. 3. Confusion matrix of DC-Fire

In summary, DC-Fire demonstrated its potential to accurately identify forest smoke and fires on IR aerial images.
It performed well in various challenging situations, including background complexity, small forest fire areas, and varying fire
characteristics such as shape, intensity, and size.

4. Conclusions

In this work, we introduced a novel deep learning architecture, namely DC-Fire, for recognizing forest smoke and fires
using aerial infrared images. DC-Fire achieved an accuracy of 100% and an F1-score of 100%, surpassing existing classical
machine learning and CNN methods. It demonstrated its reliability in identifying forest smoke and fires, dealing with numerous
limitations, including background complexity, small wildfire areas, and varying wildfire intensity. In future work, we plan to
evaluate DC-Fire in detecting smoke/fires using both RGB and infrared images.
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