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Abstract  

Deep learning has emerged as a promising tool for the nondestructive evaluation of polymer composites. However, 
its data analysis capability remains fundamentally constrained by the limited availability of thermographic data. To address 
this challenge, we propose a novel method, three-dimensional Generative Adversarial Network Principal Component 
Thermography (3DGPCT), for defect detection. By employing 3D convolutional operations, it can enable the generator to 
capture the global spatial distribution of objects, thereby maintaining structural consistency in all directions. The generated 
data are subsequently fused with the original images, and discriminative features are further extracted using principal 
component thermography. Experimental validation on carbon fiber composite specimens containing six types of defects 
demonstrates the effectiveness of the proposed defect detection method. 
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1. Introduction 

With the rapid growth in demand for polymer composites in aerospace, automotive, and related industries [1-3], 
the efficient and accurate detection of internal defects has become a central research focus in materials science. 
Conventional nondestructive evaluation (NDE) techniques, such as ultrasonic testing [4] and radiographic inspection [5], 
are widely used but suffer from several limitations, including being time-consuming, costly, and lacking sensitivity to 
complex structures. In recent years, non-contact NDE methods based on active pulsed thermography (APT) [6-8] have 
demonstrated significant potential owing to their rapidity, efficiency, and ability to provide intuitive visualizations. 

In recent years, deep learning techniques [9-11] have demonstrated remarkable capabilities in data analysis and 
feature extraction, achieving significant breakthroughs in tasks such as image recognition [12], object detection [13], and 
pattern classification [14]. Within materials science, deep learning has increasingly been applied to defect detection, 
enabling the automatic extraction of latent features from complex data through deep neural network architectures and 
thereby facilitating efficient identification of internal defects. However, the successful deployment of deep learning models 
typically requires large volumes of high-quality training data. In practice, the acquisition of extensive thermographic 
datasets is often constrained by costs and experimental limitations, resulting in insufficient and suboptimal data quality. 
These challenges substantially hinder the widespread application of deep learning for nondestructive evaluation of polymer 
composites. 

To address the challenge of insufficient data, generative adversarial networks (GANs) [15] have attracted 
considerable attention in recent years. By leveraging two adversarial networks, GANs can effectively augment both the 
quantity and quality of training data. In the field of APT, two-dimensional GANs (2DGANs) [16] are commonly employed to 
generate thermographic data based on two-dimensional images. While these approaches enhance dataset diversity, they 
are inherently limited to planar spatial information and thus fail to capture the complex three-dimensional structural features. 
This limitation becomes particularly pronounced when analyzing spatiotemporal information of APT data. 

To overcome the limitations of conventional 2DGANs in capturing spatial structural features, a defect detection 
method based on 3D generative adversarial network principal component thermography (3DGPCT) is proposed. This 
approach utilizes a 3D convolutional architecture to effectively learn the spatial distribution characteristics of internal 
defects within materials, enabling the generation of structurally consistent and high-quality thermographic data in all 
orientations. Furthermore, discriminative features are extracted through principal component thermography, facilitating 
precise defect identification. To validate the effectiveness of the 3DGPCT method, experiments were conducted on carbon 
fiber reinforced polymer (CFRP) specimens containing six representative defect types. The experimental results 
demonstrate that the proposed approach not only alleviates the limitations imposed by insufficient data but also significantly 
enhances the accuracy and robustness of internal defect detection in polymer composites. Quantitative analysis based on 
contrast-to-noise ratio (CNR) further corroborates the efficacy of the proposed method. 
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2. Data Acquisition and Preprocessing 

In this study, experimental data were acquired using APT. The experimental setup consisted of the CFRP 
specimen, two high intensity pulsed lamps, an infrared thermal camera, and a computer for data acquisition and analysis. 
During the experiment, the surface of the specimen was subjected to transient heating using the pulsed light sources, 
resulting in a swift temperature increase. The infrared thermal camera then continuously captured a time series of 
thermographic images at a high frame rate, recording the temporal evolution of the specimen surface temperature. The 
presence of internal microstructural anomalies or damage, which possess thermal properties distinct from the surrounding 
materials, leads to localized variations in heat conduction. These differences manifest as pronounced temperature changes 
in the thermal image sequence, enabling direct observation and recording of dynamic thermal distributions for subsequent 
defect identification. 

The raw thermal image data were structured as a three-dimensional matrix of size n × h × w, where n is the 
number of frames, and h and w denote the height and width of each image, respectively. After extraction, the data were 
reshaped into a two-dimensional matrix of n × t (where t is the number of pixels per frame), with each row representing a 
thermal image frame and each column corresponding to the temperature trajectory of a specific pixel over time. To ensure 
data comparability across different samples and to enhance model training efficiency, Min-Max normalization was applied 
to each row, scaling pixel temperature values linearly to the range [0, 1]. This normalization guaranteed consistent 
dimensionality and value range for all input data, thereby facilitating subsequent deep learning model analysis. 

3. Methodology 

3.1. Basic Knowledge 

The Generative Adversarial Network (GAN) is a deep learning framework grounded in game theory and comprises 
two main components: a generator and a discriminator. The core principle of GANs is to enable the generator (G) to learn 
the distribution of real data through adversarial training against the discriminator (D). The generator takes a random noise 
vector z as input and produces synthetic samples G(z), while the discriminator receives input samples x and outputs the 
probability D(x) that the sample is real. The objective function of GANs is defined as follows: 
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here, pdata(x) denotes the distribution of real data, and pz(z) represents the noise distribution. Ex~pdata(x) and Ez~pz(z) correspond 
to the expectations over the real data and noise distributions, respectively. During training, G and D are alternately 
optimized with respect to their own objectives, ultimately leading to a generator that produces samples indistinguishable 
from real data by the discriminator. 

The two-dimensional generative adversarial network (2DGAN) is an adaptation of GANs for two-dimensional 
image applications and is widely utilized in scenarios such as infrared thermography. Typically, both the G and D in 2DGAN 
are constructed based on convolutional neural networks (CNNs), allowing for effective extraction and utilization of spatial 
features within images. The generator takes a noise vector z as input and outputs a two-dimensional image G(z), while the 
discriminator determines whether a given 2D image is real or generated. The training loss function of 2DGAN closely 
resembles that of the classical GAN framework. 2DGANs have shown excellent performance in tasks such as 
thermographic image enhancement and defect detection; however, their capacity for modeling complex three-dimensional 
structures is limited. Consequently, for applications requiring preservation of spatial consistency, three-dimensional 
generative adversarial network (3DGAN) represents a promising direction for further advancement in the field of APT. 

3.2. 3DGPCT 

The 3DGAN is a GAN architecture that employs three-dimensional convolutional neural networks as its core 
structure. Both the G and D are implemented using 3D convolutional layers, enabling the model to capture complex 
relationships in both the spatial and temporal dimensions of infrared thermographic sequences. This enhances the 
network’s ability to detect subtle defects and recognize spatial distribution characteristics. In applications such as APT, the 
acquired thermal image sequences typically consist of multiple time frames and are structured as three-dimensional data 
cubes. The specific framework of 3DGPCT is illustrated in Figure 1. 

Similar to 2DGANs, the G in 3DGAN takes a low-dimensional random noise vector z as input and utilizes multiple 
layers of three-dimensional deconvolution to map the noise into a three-dimensional sample that closely resembles real 
infrared thermographic 3D data. The specific process is as follows: 

 ˆ ,
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where x̂  denotes the generated 3D thermographic data, and 
g
  represents the parameters of the G network. The 

objective of the G is to maximize the probability that the D incorrectly classifies the generated samples as real. By 
continuously optimizing its parameters, the G learns the spatial distribution characteristics of infrared thermographic data, 
thereby enabling effective simulation of complex spatial structures and temperature gradients. 

 
Fig. 1. Structure of 3DGPCT model 

The D, as a key component of the adversarial training framework, is tasked with distinguishing whether the input 
three-dimensional data are authentic infrared thermographic volumes or synthetic samples produced by G. D typically 
adopts a multi-layer three-dimensional convolutional neural network structure, which allows it to thoroughly extract high-
order spatial features from the data. By receiving input three-dimensional thermographic data, D learns to recognize the 
distributional differences between real and generated samples, ultimately outputting a probability value that reflects the 
authenticity of the input sample: 

 ; 0,1
d

D x              (3) 

where, x  denotes the generated three-dimensional thermographic data, 
d
  represents the generator 

parameters, and D(·) outputs a scalar value indicating the probability that the input sample is real. During adversarial 
training, the D continuously improves its ability to distinguish between genuine and synthetic three-dimensional 
thermographic data, thereby compelling the G to produce samples that increasingly resemble the real data distribution. 
Notably, 3DGAN adopts an objective function similar to that of conventional GANs. Through adversarial training, 3DGAN 
can generate highly structured and temporally consistent three-dimensional thermographic data. By merging the generated 
data with the original images, this approach addresses the issue of limited data diversity in the original dataset. 

Initially, column normalization is applied to preprocess the thermographic images. By effectively scaling each 
column of data according to its feature range, the relative importance of different features is balanced. This process 
significantly enhances data quality and prepares the dataset for subsequent model input. To further facilitate optimal 
network training, the thermographic data are resized to match the appropriate network input dimensions, ensuring that the 
original thermographic information is preserved for the deep learning model. 

Subsequently, the pre-processed thermographic data are input into the 3DGPCT model. The final architecture for 
both the G and D consists of five layers each. Except for the first 3D transposed convolution in G and the last 3D convolution 
in D, which use 0 padding, all other layers employ a kernel size of 4, a stride of 1, and a padding of 1. Three-dimensional 
batch normalization is applied after each layer to accelerate training and enhance stability. 
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During the training of 3DGAN, the G receives a low-dimensional random noise vector as input. In each training 
iteration, the noise is mapped through multiple layers of 3D transposed convolutions to generate synthetic infrared 
thermographic data with three-dimensional spatial structure. The D distinguishes between real and generated samples, 
and the G continuously updates its parameters based on the D feedback. This iterative adversarial optimization process 
allows the G to produce 3D data whose statistical and spatial characteristics increasingly approximate those of real data. 
As a result, the input noise vector is progressively transformed into high-quality, physically realistic 3D infrared 
thermographic volumes. 

Finally, the data are fed into the trained model, and the three-dimensional infrared thermographic data generated 
by the model are merged with the original experimental thermographic volumes to construct a more diverse and 
comprehensive dataset. Given the large number of three-dimensional thermographic samples after merging, direct analysis 
poses significant challenges associated with high-dimensional data processing. For this reason, the principal component 
thermography (PCT) [17] is used to downscale the thermographic samples. It can effectively extract the main spatial 
features, reduce data redundancy, and improve the efficiency and accuracy of subsequent defect identification and 
characterization. PCT leverages the strengths of principal component analysis in dimensionality reduction and feature 
extraction for high-dimensional thermographic data. By processing multi-frame thermographic sequences, PCT transforms 
the original complex spatiotemporal information into a set of representative principal component images, thereby 
significantly improving the separation of defect signals from background noise. 

4. Experimentation 

In this section, quantitative detection and analysis of subsurface defects in CFRP specimens were conducted 
using the proposed 3DGPCT approach. To comprehensively validate the performance of the method, 3DGPCT was 
systematically compared with several other extraction techniques. For objective evaluation of detection performance 
across different methods, the CNR [18, 19] was adopted as a quantitative metric, as it has been widely used for data 
processing and quality assessment in the field of thermography. By calculating the contrast-to-noise differences between 
typical defect regions and background areas for each method, the superiority of the 3DGPCT approach is quantitatively 
demonstrated. The specific calculation formula for CNR is as follows: 

CNR



def in

in

M M

σ
        (4) 

here, Mdef and Min represent the mean pixel values of the defect region and the non-defect (background) region in the 
thermographic image, respectively. While σin denotes the standard deviation of pixel values in the non-defect region. The 
CNR quantifies the contrast between defect and non-defect regions. A higher CNR indicates a greater capability of the 
method to identify defects. 

4.1. Dataset Information 

The dataset used in this study was prepared from CFRP specimens, with embedded square Teflon inserts of 
varying sizes and depths to simulate typical subsurface defect characteristics. Specifically, the defects were classified into 
three sizes and two depths, labeled as I, II, III and IV, V, VI, resulting in a total of six unique combinations. After epoxy 
resin infiltration, all defects became invisible. The specific locations and distribution of the defects are illustrated in Figure 
2. 

 
Fig. 2. Distribution of defects 

During data acquisition, two 3200 W·s flash lamps were first used for thermal excitation. Subsequently, infrared 
images were captured during the cooling phase using a TAS-G100EXD infrared camera. The acquisition lasted for a total 
of 2 seconds, recording 60 thermographic images at a resolution of 320×240 pixels. After excluding corrupted frames and 
retaining only the region of interest for each image, a final dataset of 59 thermographic images with a size of 90×100 pixels 
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was obtained. Figure 3 shows thermal images at different time points, reflecting the temporal evolution during the 
acquisition period. As the specimens gradually returned to room temperature, further imaging would not yield additional 
useful information, resulting in a limited number of thermal images acquired over the brief duration. Moreover, it can be 
observed that due to significant noise and non-uniform backgrounds in the acquired images, accurate detection and 
localization of defects are extremely challenging. Therefore, data augmentation is necessary to enrich the diversity of 
thermographic images and enhance the overall quality of the dataset. 

 
Fig. 3. Original thermal image 

4.2. 3DGPCT analysis results 

After normalization, the data were resized to suitable dimensions and input into the model for training. The model 
was trained with a learning rate of 0.0001 and a batch size of 7500. Figure 4 shows the thermographic data generated by 
the trained model. It is noteworthy that the generated images exhibit a global trend highly consistent with the original data. 
In the early stages, both the original and generated images reflect surface thermal features, and defects are not visible. As 
time progresses, shallow and deep defects gradually become apparent. In the later stages of acquisition, as the specimen 
temperature approaches room temperature, the images become dominated by substantial noise. 

 
Fig. 4. Thermal image generated by 3DGPCT 

Subsequently, 15 images were selected from both the acquired and generated datasets to compare the temporal 
evolution of thermal responses. Overall, the generated images present more distinct defect features compared to the 
original images, with deep defects also being effectively represented. Notably, defect information remains discernible in 
the generated images even during the later stages, indicating that the model successfully preserves salient features 
throughout the learning and training process. During experimental acquisition, as the specimen temperature returns to 
ambient, the temperature difference between defects and the surrounding material diminishes, causing defect signals to 
become increasingly obscure. In contrast, the model-generated images are able to alleviate this issue, retaining defect 
features over a longer temporal span as the temperature equilibrates. The details are shown in Figure 5. 

To better observe and localize defects, PCT was applied to the original data, and the first six principal components 
(PCs) were extracted for analysis and comparison. Similarly, the 3DGPCT model output was also analyzed by extracting 
its first six PCs. For a comprehensive performance evaluation, conventional GAN and DCGAN models with comparable 
network architectures were also included for comparison. The images generated by these networks were subjected to PCT, 
and their first six PCs were analyzed. The visualization results for all four approaches are presented in Figure 6. 

 
(a) Original image 

 
(b) 3DGPCT image 

Fig. 5. Evolution of original image and 3DGPCT image 

In the PCT results of the original images, defects can be faintly detected, but their contrast with the background 
is limited. In the PCT-processed images generated by the original GAN, shallow defects are distinguishable from the 
background, whereas deep defects are largely masked by noise. The results from DCGAN are similar, with shallow defects 
being difficult to observe directly. In contrast, the 3DGPCT model yields highly visible representations of shallow defects 
and also provides distinct characterization of deep defects. As the specimen temperature returns to equilibrium, fewer of 
the raw thermographic images visualize deep defects. The 3DGPCT model, however, is able to generate more images 



 
 
 
 

5th Asian Quantitative InfraRed Thermography Conference, July 14~18, 2025, Harbin, China. 
  

 

 6 
 

 

containing deep defect features, thereby enhancing the diversity and richness of the dataset and greatly preserving critical 
defect information. 

 
(a) Original                               (b) GAN                               (c) DCGAN                               (d) 3DGAN 

Fig. 6. Results of the four PCT visualizations 

Table 1 presents the quantitative results corresponding to the above visual analyses. It is evident that, for most 
defect types, the CNR values achieved by the 3DGPCT method are significantly higher than those of the other methods. 
This indicates that 3DGPCT not only enriches the diversity of the original images but also enhances the representation of 
defect features, thereby facilitating more accurate defect identification. Furthermore, by incorporating spatiotemporal 
modeling, 3DGAN is able to more effectively integrate multi-frame or multi-angle feature information, resulting in improved 
robustness and accuracy in detection. Compared to conventional two-dimensional, 3DGAN demonstrates superior 
capabilities in capturing and expressing spatiotemporal features, providing richer support for the stereoscopic 
representation of defect information. Both the visual observations and quantitative metrics such as CNR consistently 
confirm the outstanding performance of 3DGPCT in defect detection, particularly in expressing spatiotemporal information 
and accurately identifying deep defects. 

Table 1. CNR results of different methods 

 Defect A Defect B Defect C Defect D Defect E Defect F 

PCT 2.382 2.543 2.084 1.087 0.719 0.809 

GAN 2.393 2.363 1.952 0.824 0.725 0.755 

DCGAN 1.846 1.706 1.566 0.952 0.614 0.589 

3DGAN 2.432 2.097 2.963 1.237 1.102 1.481 

5. Conclusion 

In this study, a data augmentation method based on 3DGPCT was proposed and validated for subsurface defect 
detection in CFRP specimens. By incorporating temporal sequences into the modeling process, the approach effectively 
mitigates the disappearance of deep defects due to temporal decay. The model not only enriches the diversity of the 
original thermographic images, but also better preserves the representation of deep defects. The effectiveness of the 
method was demonstrated on a CFRP sample containing six defects. Comparative experiments with linear and two-
dimensional GANs of similar architecture further highlighted the superior performance of the proposed approach. Finally, 
quantitative evaluation using the CNR metric robustly confirmed the efficacy of the method. 
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