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Abstract

Deep learning-based infrared thermography (IRT) has garnered significant attention in non-destructive testing
(NDT) techniques, enabling automatic detection of subsurface defects in industrial components. While most research
focuses on improving network architectures, the impact of activation functions is merely explored. For instance, traditional
activations struggle to capture fine spatial and temporal features in thermographic representations. Hence, this work
proposes leveraging periodic activation functions to enhance implicit neural representations for learning-based defect
analysis. Evaluated on the Université Laval IRT-PVC segmentation dataset, the proposed approach improves
segmentation accuracies by 7% compared to traditional activation functions, such as ReLU.
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1. Introduction

The increasing demand for rigorous quality control in the aerospace industry has driven the adoption of advanced
non-destructive evaluation (NDE) techniques in aerospace manufacturing [1, 2]. Consequently, a wide spectrum of NDE
technologies, including ultrasonic testing, radiography, and infrared thermography (IRT), have been developed to detect
hidden anomalies and subsurface defects in aerospace components and assess their structural integrity. Among these
technologies, IRT stands out and is valued for its fast-scanning speed, low cost, and non-contact nature [3]. These
advantages demonstrated the application of IRT to detect subsurface defects in PVCs [4, 5], composites [6, 7], PLA [8, 9],
and concrete structures [10, 11].

Advancements in artificial intelligence (Al) have significantly improved the reliability and accuracy of infrared
thermography for defect detection. The most prevalent state-of-the-art IRT approaches involve compressing IRT
sequences to thermographic representations, such as principal component analysis (PCA) [12, 13] and Thermographic
Signal Reconstruction (TSR) [14, 15], before feeding them into Al models. Extensive research has explored various IRT
network architectures for defect detection, segmentation, and depth estimation. However, the impact of network activation
functions on defect characterization accuracy remains unexplored, despite their critical role in influencing model
performance.

Motivated by the above, this work proposes the IRT-Sinusoidal Representation Network (IRT-SIREN U-Net), a
modified U-Net architecture that employs periodic activation functions to enhance implicit neural representations for
learning-based IRT defect analysis. Additionally, the study quantifies the impact of different activation functions on the
performance of IRT defect segmentation networks. The proposed method is tested on the Université Laval IRT-PVC
segmentation dataset and the results show that IRT-SIREN U-Net improves segmentation accuracies by 7% compared to
its ReLU counterpart.

1.1. Related Work

IRT has established itself as a key NDT technique for detecting hidden subsurface defects in a range of industrial
components. In addition, IRT has recently witnessed the adoption of Al methodologies in IRT setups to further enhance its
reliability and detection accuracy. These advancements saw the applications of IRT grow rapidly in aerospace [16] and
construction [17] industries, and in inspection of artworks [18]. This growing demand for IRT led to a series of investigations
on neural network architectures, triggering the emergence of advanced learning-based IRT defect detection models. To
illustrate, Tong et al. [19] and Lema et al. [4] fine-tuned Faster R-CNN and Yolov5 networks for IRT defect detection
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applications, respectively. In addition, other network architectures have been proposed such as ConvLSTM [20] for
enhanced IRT defect detection.

Similarly, a series of network architectures have been proposed for IRT defect segmentation. Fang et al. [21]
experimentally studied state-of-the-art segmentation network architectures for subsurface defect segmentation, such as
U-Net and ResNet. In addition, an attention U-Net network was proposed for improved defect segmentation compared to
traditional U-Net [22]. These networks employ spatial filters with no regard of the inherent temporal features in
thermographic sequences. Thus, 3D-CNNs were proposed to account for the temporal dimension for enhanced
segmentation of subsurface defects in industrial components [6]. Still, the developed networks are completely convolutional
and the performance of CNNs is limited by the receptive field of the convolutional layers. Therefore, attention mechanisms
have been incorporated in IRT defect segmentation networks to address the drawback of the limited receptive field of
CNNs and capture long range dependencies in thermographic data [23].

The aforementioned approaches utilize thermography dimensionality reduction techniques to generate
thermographic representations as inputs to deep neural networks, while optimizing the network architectures for improved
defect characterization accuracies. The most prevalent thermography dimensionality reduction techniques include thermal
signal reconstruction (TSR) [14, 15], pulse phase thermography (PPT) [24, 25], and principal component analysis [12, 13].
However, the effect of activation functions in shaping the learning dynamics of IRT networks is unexplored. To address
this gap, this work introduces the IRT-SIREN U-Net, a modified IRT U-Net that leverages periodic activation functions to
enhance implicit neural representations for defect segmentation. The proposed method also provides a comparative
analysis of standard and periodic activations, offering new insights into their impact on segmentation performance.

1.2. Structure of The Article

The rest of the article is structured as follows. Section 2 provides necessary preliminaries for IRT-SIREN U-Net
methodology. Section 3 outlines the proposed IRT-SIREN U-Net. Section 4 presents experimental validations of the IRT-
SIREN U-Net tested on the IRT-PVC dataset. Finally, section 5 presents conclusions, findings, and future aspects of the
proposed work.

2. Preliminaries

Signal Genel
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Fig. 1:Typical IRT setup involving flash lamps and an IR camera. In the presence of defects, heat tends to be
trapped, generating an abnormal thermal distribution on the surface of the specimen and recorded by the IR camera for
IRT inspection.

2.1. Infrared Thermography and IRT-PVC Dataset

A typical IRT setup is shown in Fig. 1. IRT involves a halogen lamp stimulating the target specimen with a
controlled heat input [2]. If the specimen is sound, all pixels of the IR camera generate similar thermal profiles. If defects
are present, heat tends to be trapped, and an abnormal thermal profile is generated on the surface of the specimen and is
captured by the IR camera for further analysis.

Several IRT datasets following the general IRT setup are publicly available. In this work, the IRT-SIREN U-Net is
evaluated on the IRT-PVC dataset [4, 5]. The dataset comprises 38 inspection sequences of 3D-printed PVC samples with
back-drilled holes at depths ranging between 0 and 2.5 mm at increments of 0.5 mm. Each depth increment is designated
as a defect class and each inspection sequence S; = {Ik}ﬁl":1 is a 3D matrix of shape (N, , Ny, Nx) with I, thermograms,
where k =1, 2, ..., N, is the image timestamp, i represents the sample index, Ny is the image height, and Nx is its width.
S; is reshaped to (N: , Ny x Nx) by a raster-like operation and standardized by:
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and §, = {Sn}ZixlN" is the standardized pixel-wise thermal response.

2.2. Infrared Thermography Representations

Developing IRT networks that process the entire inspection sequence introduces significant computational and
memory demands. Instead, the thermal sequences are compressed to PCA and TSR representations, which capture the
important information in thermographic signals with reduced dimensionality. For instance, the PCA representation
enhances defect clarity, while TSR models the temporal evolution of the pixel responses.

To generate PCA representation, singular value decomposition (SVD) is applied by

S;=urv?,

where U is the set of orthogonal functions representing spatial differences within the input pixel responses, I' comprises
singular eigenvalues, and matrix V contains the principal components. Hence, the PCA images are formulated by

Pk = S‘:ivk,

where V, is the K" eigenvector in V. Note that only the first 5-10 principal components are utilized for creating the PCA
images, P = [Py, P,, ..., P;] as an input representation for IRT networks.

On the other hand, TSR images are generated by logarithmic n-degree polynomial fitting on the pixel’s time
responses as

In(AT) = ay + a; In(t) + a, In(t)? + a3 In(t)® + a, In(£)* + as In(t)5,

where a,, are the polynomial coefficients, AT is the temperature difference, and t is time. It is worth mentioning that in our
work a 4-degree polynomial is utilized for creating the TSR representation and the polynomial each coefficient is utilized
as a channel for the TSR images. Collectively, a 10 channel PCA image P and 5 channel TSR image T are generated from
each inspection sequence and is utilized as input to IRT-SIREN U-Net.

3. Methodology
3.1 IRT-SIREN U-Net

The architecture of the IRT-SIREN U-Net is shown in Fig. 2. Conventional IRT U-Net architectures utilize the
standard activation function ReLU. While these activations demonstrated effectiveness in various computer vision domains
including IRT, these non-periodic activations often limit the network's ability to capture high-frequency signal variations and
subtle defect patterns inherent in thermographic data. As shown in Fig. 2d, these traditional networks follow a standard
kxk convolution — activation — normalization pipeline within each encoder and decoder block.

In contrast, the proposed IRT-SIREN U-Net introduces periodic activation functions into the U-Net structure to
improve the network’s expressiveness and ability to represent complex signal variations. Fig. 2c highlights this architectural
difference, where each block integrates a sinusoidal activation between the convolution and normalization layers. The
network preserves the overall U-Net structure, which comprises of a convolutional encoder, bottleneck, decoder with skip
connections. Nonetheless, IRT-SIREN U-Net replaces the non-linearities in each convolutional block with sinusoidal
activations defined as

P (x) = sin(wox),

where w, = 30 is a frequency scaling factor that controls the periodicity of the activation function. Consequently, the
complete transformation performed by each SIREN convolution block in Fig. 2b and 2c is expressed by
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Fig. 2: a) IRT-SIREN U-Net architecture. b) and c) IRT-SIREN U-Net layers incorporating periodic activations.
d) Traditional layers utilized in IRT U-Net with ReLU.
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In contrast, the traditional convolution block, see Fig. 2d, applies a hon-periodic activation such as ReLU as
4, = BatchNorm2D(B(W, * x; + b)),

where * denotes 2D convolution, § is a non-periodic activation function, x, is the input, W, are the weights, and b, is the
bias of the ¢-th layer, respectively. To ensure stable training and convergence with sine activations, the network’s weights
and biases must follow specific initialization criteria [26]. For instance, the weights of the first layer are initialized from a
uniform distribution as

W u( 1 1)
! Nin'Nin'

while for subsequent layers ¢ > 1, the weights are initialized as

Wo ~1U 6 6
¢ Nin' Nin .

After formulating the topology of IRT-SIREN U-Net, input thermographic representations are, PCA P and TSR T, are fed
to the network produce a segmentation mask, M; € {0,1,...,C — 1}"*Nx  where C is the number of defect classes
corresponding to the depth of the back-drilled hole. Max pooling and transposed convolutions are used for downsampling
and upsampling, respectively, with skip connections preserving spatial features across consecutive resolution levels.

3.2 Implementation Details and Training

The proposed IRT-SIREN U-Net is implemented with a lightweight architecture comprising three
encoder/deconvolutional blocks. Each convolution block integrates a 3x3 convolutional layer, sinusoidal activation, and
batch normalization. Downsampling and upsampling are performed using 2x2 max pooling and transposed convolutions,
respectively. On the other hand, IRT-SIREN U-Net is trained on the IRT-PVC on 26 inspection sequences randomly
selected from the dataset and the network’s accuracy is reported on the validation and testing datasets, each comprising
of 6 randomly selected inspection samples. To improve generalization and reduce overfitting during training, data
augmentation is applied, which incorporates random cropping, rotation, translation, and affine shearing.

Training is performed using a batch size of 8, with the Categorical Cross-Entropy (CCE) loss for multi-class

segmentation defined as
N C

L=— Z Yiclog(¥e),
1

i=1c=
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where N is the total number of samples within a batch, y; . is the ground truth label, and y,, is the predicted probability that
pixel i belongs to class c. The network outputs a pixel-wise segmentation mask, M; € {0,1, ..., C — 1}»*Nx, where C is the
number of defect classes, including background. The model is optimized using the Adam optimizer with a learning rate of
le — 4.

4. Results
4.1. Experimental Validation

The proposed framework is evaluated on the validation and testing datasets of the IRT-PVC dataset. Since multi-
class segmentation is tackled, the evaluation metrics utilized are mean Intersection over Union (loU), recall, and precision.
Let TP;, FP;, FN: denote denote the true positives, false positives, and false negatives for class ¢, and C be the total
number of classes, the loU for each class is computed as

U TP,
¢ = TP+ FP, + FN,

Similarly, the recall and precision are evaluated by

s s TPC
, Precision, =

Recall, = =—°
ecalle TP, + FP,

TP,
TP, + FN,

The metrics are reported on the validation and testing sets, where we also benchmark the IRT-SIREN U-Net against its
traditional U-Net (e.g. ReLU) based on these metrics. It is worth mentioning that the reported metrics and benchmarks are
reported for input representations TSR and PCA.

4.2 Defect Segmentation Evaluation

To assess the effectiveness of the proposed IRT-SIREN U-Net, its segmentation performance is evaluated when
fed input representations, PCA and TSR. Two architectures are compared: the baseline U-Net and the proposed SIREN-
based U-Net. This comparison enables a thorough evaluation of the influence of activation type on defect segmentation
accuracy. Table 1 presents a qualitative comparison of the segmentation outputs for representative samples from the IRT-
PVC test and validation sets. Ground truth defect masks are compared with predicted masks generated from PCA and
TSR inputs processed by both the standard U-Net and IRT-SIREN U-Net. The SIREN-based model consistently produces
sharper, more spatially coherent segmentations, particularly in detecting small or shallow defects that are often missed by
the baseline U-Net. This improvement is especially evident when using PCA and TSR inputs, where the periodic activation
better preserves thermal signal variations.

To quantify the two network accuracies, Table 2 provides segmentation performance in terms of mean loU, recall,
and precision. The proposed IRT-SIREN U-Net outperforms the baseline across all modalities, achieving the highest mloU
and recall scores. Notably, the largest performance gain is observed for the PCA input, with a 7% improvement in mloU
compared to the ReLU-based counterpart. This highlights the benefit of sinusoidal activations in extracting high-frequency
features critical for detecting fine thermal anomalies. Collectively, the obtained results show that integrating sinusoidal
activations into a U-Net backbone enhances the model’s ability to leads to improved subsurface defect characterization.

5. Conclusions and Future Work

This paper presented the IRT-Sinusoidal Representation Network (IRT-SIREN U-Net), a modified U-Net
architecture designed to enhance infrared thermography (IRT) defect segmentation through the use of periodic activation
functions. Unlike conventional models that rely on ReLU, the proposed network incorporates sine activations to improve
the network's ability to capture high-frequency thermal signal variations. Experimental results on the Université Laval IRT-
PVC dataset demonstrate that IRT-SIREN U-Net achieves superior segmentation performance, with a 7% improvement in
mean loU compared to traditional activation-based models. This work highlights the significance of activation function
choice in thermal defect analysis and opens new directions for leveraging implicit representations in Al-driven IRT.
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Table 1: Qualitative comparisons between IRT-SIREN U-Net and traditional U-Net architecture for multi-class
defect segmentation.

Input Sample 1 Sample 2

U-Net PCA

IRT-SIREN
U-Net TSR

U-Net TSR

IRT-SIREN
U-Net TSR

Ground
Truth Mask
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Table 2: Quantified segmentation performance of IRT-SIREN U-Net and traditional U-Net with ReLU activation.

Network mloU Recall Precision
PCA IRT-SIREN U-Net 0.811 0.804 0.811
PCA ReLU U-Net 0.724 0.756 0.732
TSR IRT-SIREN U-Net 0.824 0.827 0.836
TSR ReLU U-Net 0.747 0.773 0.782
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