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Abstract 

Deep learning-based infrared thermography (IRT) has garnered significant attention in non-destructive testing 
(NDT) techniques, enabling automatic detection of subsurface defects in industrial components. While most research 
focuses on improving network architectures, the impact of activation functions is merely explored. For instance, traditional 
activations struggle to capture fine spatial and temporal features in thermographic representations. Hence, this work 
proposes leveraging periodic activation functions to enhance implicit neural representations for learning-based defect 
analysis. Evaluated on the Université Laval IRT-PVC segmentation dataset, the proposed approach improves 
segmentation accuracies by 7% compared to traditional activation functions, such as ReLU. 
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1. Introduction 

The increasing demand for rigorous quality control in the aerospace industry has driven the adoption of advanced 
non-destructive evaluation (NDE) techniques in aerospace manufacturing [1, 2]. Consequently, a wide spectrum of NDE 
technologies, including ultrasonic testing, radiography, and infrared thermography (IRT), have been developed to detect 
hidden anomalies and subsurface defects in aerospace components and assess their structural integrity. Among these 
technologies, IRT stands out and is valued for its fast-scanning speed, low cost, and non-contact nature [3]. These 
advantages demonstrated the application of IRT to detect subsurface defects in PVCs [4, 5], composites [6, 7], PLA [8, 9], 
and concrete structures [10, 11]. 

Advancements in artificial intelligence (AI) have significantly improved the reliability and accuracy of infrared 
thermography for defect detection. The most prevalent state-of-the-art IRT approaches involve compressing IRT 
sequences to thermographic representations, such as principal component analysis (PCA) [12, 13] and Thermographic 
Signal Reconstruction (TSR) [14, 15], before feeding them into AI models. Extensive research has explored various IRT 
network architectures for defect detection, segmentation, and depth estimation. However, the impact of network activation 
functions on defect characterization accuracy remains unexplored, despite their critical role in influencing model 
performance. 

Motivated by the above, this work proposes the IRT-Sinusoidal Representation Network (IRT-SIREN U-Net), a 
modified U-Net architecture that employs periodic activation functions to enhance implicit neural representations for 
learning-based IRT defect analysis. Additionally, the study quantifies the impact of different activation functions on the 
performance of IRT defect segmentation networks. The proposed method is tested on the Université Laval IRT-PVC 
segmentation dataset and the results show that IRT-SIREN U-Net improves segmentation accuracies by 7% compared to 
its ReLU counterpart. 

1.1. Related Work 

IRT has established itself as a key NDT technique for detecting hidden subsurface defects in a range of industrial 
components. In addition, IRT has recently witnessed the adoption of AI methodologies in IRT setups to further enhance its 
reliability and detection accuracy. These advancements saw the applications of IRT grow rapidly in aerospace [16] and 
construction [17] industries, and in inspection of artworks [18]. This growing demand for IRT led to a series of investigations 
on neural network architectures, triggering the emergence of advanced learning-based IRT defect detection models. To 
illustrate, Tong et al. [19] and Lema et al. [4] fine-tuned Faster R-CNN and Yolov5 networks for IRT defect detection 
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applications, respectively. In addition, other network architectures have been proposed such as ConvLSTM [20] for 
enhanced IRT defect detection. 

Similarly, a series of network architectures have been proposed for IRT defect segmentation. Fang et al. [21] 
experimentally studied state-of-the-art segmentation network architectures for subsurface defect segmentation, such as 
U-Net and ResNet. In addition, an attention U-Net network was proposed for improved defect segmentation compared to 
traditional U-Net [22]. These networks employ spatial filters with no regard of the inherent temporal features in 
thermographic sequences. Thus, 3D-CNNs were proposed to account for the temporal dimension for enhanced 
segmentation of subsurface defects in industrial components [6]. Still, the developed networks are completely convolutional 
and the performance of CNNs is limited by the receptive field of the convolutional layers. Therefore, attention mechanisms 
have been incorporated in IRT defect segmentation networks to address the drawback of the limited receptive field of 
CNNs and capture long range dependencies in thermographic data [23]. 

The aforementioned approaches utilize thermography dimensionality reduction techniques to generate 
thermographic representations as inputs to deep neural networks, while optimizing the network architectures for improved 
defect characterization accuracies. The most prevalent thermography dimensionality reduction techniques include thermal 
signal reconstruction (TSR) [14, 15], pulse phase thermography (PPT) [24, 25], and principal component analysis [12, 13]. 
However, the effect of activation functions in shaping the learning dynamics of IRT networks is unexplored. To address 
this gap, this work introduces the IRT-SIREN U-Net, a modified IRT U-Net that leverages periodic activation functions to 
enhance implicit neural representations for defect segmentation. The proposed method also provides a comparative 
analysis of standard and periodic activations, offering new insights into their impact on segmentation performance. 

1.2. Structure of The Article 

The rest of the article is structured as follows. Section 2 provides necessary preliminaries for IRT-SIREN U-Net 
methodology. Section 3 outlines the proposed IRT-SIREN U-Net. Section 4 presents experimental validations of the IRT-
SIREN U-Net tested on the IRT-PVC dataset. Finally, section 5 presents conclusions, findings, and future aspects of the 
proposed work. 

2. Preliminaries 

 

Fig. 1:Typical IRT setup involving flash lamps and an IR camera. In the presence of defects, heat tends to be 
trapped, generating an abnormal thermal distribution on the surface of the specimen and recorded by the IR camera for 

IRT inspection. 

2.1. Infrared Thermography and IRT-PVC Dataset 

A typical IRT setup is shown in Fig. 1. IRT involves a halogen lamp stimulating the target specimen with a 
controlled heat input [2]. If the specimen is sound, all pixels of the IR camera generate similar thermal profiles. If defects 
are present, heat tends to be trapped, and an abnormal thermal profile is generated on the surface of the specimen and is 
captured by the IR camera for further analysis. 

Several IRT datasets following the general IRT setup are publicly available. In this work, the IRT-SIREN U-Net is 
evaluated on the IRT-PVC dataset [4, 5]. The dataset comprises 38 inspection sequences of 3D-printed PVC samples with 
back-drilled holes at depths ranging between 0 and 2.5 mm at increments of 0.5 mm. Each depth increment is designated 

as a defect class and each inspection sequence 𝑆𝑖 = {𝐼𝑘}
𝑘=1
𝑁𝑡  is a 3D matrix of shape (Nₜ , Nᵧ, Nₓ) with Iₖ  thermograms, 

where k = 1, 2, ..., Nₜ  is the image timestamp, i represents the sample index, Nᵧ is the image height, and Nₓ is its width. 
𝑺𝒊 is reshaped to (Nₜ , Nᵧ × Nₓ) by a raster-like operation and standardized by: 
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𝑆𝑖̂ =
𝑆𝑖 − μ𝑘

σ𝑘
, 

where, 

μ𝑘 =
1

𝑁𝑡
∑ 𝑆𝑘

𝑁𝑡

𝑘=1

, 

σ𝑘
2 =

1

𝑁𝑡 − 1
∑(𝑆𝑘 − μ𝑘)2

𝑁𝑡

𝑘=1

, 

and 𝑆𝑖̂ = {𝑆𝑛}
𝑛=1

𝑁𝑦×𝑁𝑥
 is the standardized pixel-wise thermal response. 

2.2. Infrared Thermography Representations 

Developing IRT networks that process the entire inspection sequence introduces significant computational and 
memory demands. Instead, the thermal sequences are compressed to PCA and TSR representations, which capture the 
important information in thermographic signals with reduced dimensionality. For instance, the PCA representation 
enhances defect clarity, while TSR models the temporal evolution of the pixel responses. 

To generate PCA representation, singular value decomposition (SVD) is applied by 

𝑆𝑖 = 𝒰Γ𝑉𝑇 , 

where 𝒰 is the set of orthogonal functions representing spatial differences within the input pixel responses, Γ comprises 
singular eigenvalues, and matrix 𝑉 contains the principal components. Hence, the PCA images are formulated by 

𝑃𝑘 = 𝑆𝑖𝑣𝑘 , 

where 𝑉𝑘 is the 𝐾𝑡ℎ eigenvector in 𝑉. Note that only the first 5-10 principal components are utilized for creating the PCA 

images, 𝑃 = [𝑃1 , 𝑃2, … , 𝑃𝐽] as an input representation for IRT networks. 

 On the other hand, TSR images are generated by logarithmic n-degree polynomial fitting on the pixel’s time 
responses as 

ln(Δ𝑇) = 𝑎0 + 𝑎1 ln(𝑡) + 𝑎2 ln(𝑡)2 + 𝑎3 ln(𝑡)3 + 𝑎4 ln(𝑡)4 + 𝑎5 ln(𝑡)5, 

where 𝑎𝑛 are the polynomial coefficients, Δ𝑇 is the temperature difference, and 𝑡 is time. It is worth mentioning that in our 
work a 4-degree polynomial is utilized for creating the TSR representation and the polynomial each coefficient is utilized 
as a channel for the TSR images. Collectively, a 10 channel PCA image 𝑷 and 5 channel TSR image 𝐓 are generated from 
each inspection sequence and is utilized as input to IRT-SIREN U-Net. 

3. Methodology 

3.1. IRT-SIREN U-Net  

The architecture of the IRT-SIREN U-Net is shown in Fig. 2. Conventional IRT U-Net architectures utilize the 
standard activation function ReLU. While these activations demonstrated effectiveness in various computer vision domains 
including IRT, these non-periodic activations often limit the network's ability to capture high-frequency signal variations and 
subtle defect patterns inherent in thermographic data. As shown in Fig. 2d, these traditional networks follow a standard 
k×k convolution → activation → normalization pipeline within each encoder and decoder block. 

In contrast, the proposed IRT-SIREN U-Net introduces periodic activation functions into the U-Net structure to 
improve the network’s expressiveness and ability to represent complex signal variations. Fig. 2c highlights this architectural 
difference, where each block integrates a sinusoidal activation between the convolution and normalization layers. The 
network preserves the overall U-Net structure, which comprises of a convolutional encoder, bottleneck, decoder with skip 
connections. Nonetheless, IRT-SIREN U-Net replaces the non-linearities in each convolutional block with sinusoidal 
activations defined as  

ϕ(𝑥) = 𝑠𝑖𝑛(𝑤0𝑥), 

 

where 𝑤0 = 30 is a frequency scaling factor that controls the periodicity of the activation function. Consequently, the 
complete transformation performed by each SIREN convolution block in Fig. 2b and 2c is expressed by 
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Fig. 2: a) IRT-SIREN U-Net architecture. b) and c) IRT-SIREN U-Net layers incorporating periodic activations. 
d) Traditional layers utilized in IRT U-Net with ReLU. 

𝓎ℓ′ = BatchNorm2D(sin(ω0 ⋅ (𝑊ℓ ∗ 𝑥ℓ + 𝑏ℓ))). 

In contrast, the traditional convolution block, see Fig. 2d, applies a non-periodic activation such as ReLU as 

𝓎ℓ = BatchNorm2D(β(𝑊ℓ ∗ 𝑥ℓ + 𝑏ℓ)), 

where ∗ denotes 2D convolution, 𝛽 is a non-periodic activation function, 𝑥ℓ is the input, 𝑊ℓ are the weights, and 𝑏ℓ is the 
bias of the ℓ-th layer, respectively. To ensure stable training and convergence with sine activations, the network’s weights 
and biases must follow specific initialization criteria [26]. For instance, the weights of the first layer are initialized from a 
uniform distribution as  

𝑊1 ∼ 𝒰 (−
1

𝑁in
,

1

𝑁in
), 

while for subsequent layers ℓ > 1, the weights are initialized as 

𝑊ℓ ∼ 𝒰 (−√
6

𝑁in
, √

6

𝑁in
). 

After formulating the topology of IRT-SIREN U-Net, input thermographic representations are, PCA 𝑷 and TSR 𝐓, are fed 

to the network produce a segmentation mask, 𝑀𝑖 ∈ {0,1, … , 𝐶 − 1}𝑁𝑦×𝑁𝑥 , where 𝐶  is the number of defect classes 
corresponding to the depth of the back-drilled hole. Max pooling and transposed convolutions are used for downsampling 
and upsampling, respectively, with skip connections preserving spatial features across consecutive resolution levels. 

3.2. Implementation Details and Training 

The proposed IRT-SIREN U-Net is implemented with a lightweight architecture comprising three 
encoder/deconvolutional blocks. Each convolution block integrates a 3×3 convolutional layer, sinusoidal activation, and 
batch normalization. Downsampling and upsampling are performed using 2×2 max pooling and transposed convolutions, 
respectively. On the other hand, IRT-SIREN U-Net is trained on the IRT-PVC on 26 inspection sequences randomly 
selected from the dataset and the network’s accuracy is reported on the validation and testing datasets, each comprising 
of 6 randomly selected inspection samples. To improve generalization and reduce overfitting during training, data 
augmentation is applied, which incorporates random cropping, rotation, translation, and affine shearing. 

Training is performed using a batch size of 8, with the Categorical Cross-Entropy (CCE) loss for multi-class 
segmentation defined as 

ℒ = − ∑ ∑ 𝑦𝑖,𝑐

𝐶

𝑐=1

log(𝑦𝑖,𝑐̂),

𝑁

𝑖=1
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where 𝑁 is the total number of samples within a batch, 𝑦𝑖,𝑐 is the ground truth label, and 𝑦𝑖,𝑐̂ is the predicted probability that 

pixel 𝑖 belongs to class 𝑐. The network outputs a pixel-wise segmentation mask, 𝑴𝒊 ∈ {0,1, … , 𝐶 − 1}𝑁𝑦×𝑁𝑥 , where 𝐶 is the 
number of defect classes, including background. The model is optimized using the Adam optimizer with a learning rate of 
1𝑒 − 4. 

4. Results 

4.1. Experimental Validation 

The proposed framework is evaluated on the validation and testing datasets of the IRT-PVC dataset. Since multi-
class segmentation is tackled, the evaluation metrics utilized are mean Intersection over Union (IoU), recall, and precision. 
Let TPc, FPc, FNc denote denote the true positives, false positives, and false negatives for class 𝑐, and C  be the total 
number of classes, the IoU for each class is computed as 

IoUc =
TPc

TPc + FPc + FNc
. 

Similarly, the recall and precision are evaluated by 

Recallc =
TPc

TPc + FNc
, Precisionc =

TPc

TPc + FPc
. 

The metrics are reported on the validation and testing sets, where we also benchmark the IRT-SIREN U-Net against its 
traditional U-Net (e.g. ReLU) based on these metrics. It is worth mentioning that the reported metrics and benchmarks are 
reported for input representations TSR and PCA. 

4.2. Defect Segmentation Evaluation 

To assess the effectiveness of the proposed IRT-SIREN U-Net, its segmentation performance is evaluated when 
fed input representations, PCA and TSR.  Two architectures are compared: the baseline U-Net and the proposed SIREN-
based U-Net. This comparison enables a thorough evaluation of the influence of activation type on defect segmentation 
accuracy. Table 1 presents a qualitative comparison of the segmentation outputs for representative samples from the IRT-
PVC test and validation sets. Ground truth defect masks are compared with predicted masks generated from PCA and 
TSR inputs processed by both the standard U-Net and IRT-SIREN U-Net. The SIREN-based model consistently produces 
sharper, more spatially coherent segmentations, particularly in detecting small or shallow defects that are often missed by 
the baseline U-Net. This improvement is especially evident when using PCA and TSR inputs, where the periodic activation 
better preserves thermal signal variations. 

 
To quantify the two network accuracies, Table 2 provides segmentation performance in terms of mean IoU, recall, 

and precision. The proposed IRT-SIREN U-Net outperforms the baseline across all modalities, achieving the highest mIoU 
and recall scores. Notably, the largest performance gain is observed for the PCA input, with a 7% improvement in mIoU 
compared to the ReLU-based counterpart. This highlights the benefit of sinusoidal activations in extracting high-frequency 
features critical for detecting fine thermal anomalies. Collectively, the obtained results show that integrating sinusoidal 
activations into a U-Net backbone enhances the model’s ability to leads to improved subsurface defect characterization. 

5. Conclusions and Future Work 

This paper presented the IRT-Sinusoidal Representation Network (IRT-SIREN U-Net), a modified U-Net 
architecture designed to enhance infrared thermography (IRT) defect segmentation through the use of periodic activation 
functions. Unlike conventional models that rely on ReLU, the proposed network incorporates sine activations to improve 
the network's ability to capture high-frequency thermal signal variations. Experimental results on the Université Laval IRT-
PVC dataset demonstrate that IRT-SIREN U-Net achieves superior segmentation performance, with a 7% improvement in 
mean IoU compared to traditional activation-based models. This work highlights the significance of activation function 
choice in thermal defect analysis and opens new directions for leveraging implicit representations in AI-driven IRT. 
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Table 1: Qualitative comparisons between IRT-SIREN U-Net and traditional U-Net architecture for multi-class 
defect segmentation. 

Input Sample 1 Sample 2 

U-Net PCA 

  

IRT-SIREN 
U-Net TSR 

  

U-Net TSR 

  

IRT-SIREN 
U-Net TSR 

  

Ground 
Truth Mask 
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Table 2: Quantified segmentation performance of IRT-SIREN U-Net and traditional U-Net with ReLU activation. 

Network mIoU Recall Precision 

PCA IRT-SIREN U-Net 0.811 0.804 0.811 

PCA ReLU U-Net 0.724 0.756 0.732 

TSR IRT-SIREN U-Net 0.824 0.827 0.836 

TSR ReLU U-Net 0.747 0.773 0.782 
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